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h i g h l i g h t s

• We propose a new approach combining CGR and 2D MF-X-DFA methods to analyze DNA sequences of unequal lengths.
• The multifractal characteristics of coding and non-coding sequence of eight prokaryotes are studied.
• The existence of strong multifractal behavior is observed in the nucleotide sequences.
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a b s t r a c t

We propose a new approach combining the chaos game representation and the two di-
mensional multifractal detrended cross correlation analysis methods to examine multi-
fractal behavior in power law cross correlation between any pair of nucleotide sequences
of unequal lengths. In this work, we analyzed the characteristic behavior of coding and
non-coding DNA sequences of eight prokaryotes. The results show the presence of strong
multifractal nature between coding and non-coding sequences of all data sets. We found
that this integrative approach helps us to consider complete DNA sequences for charac-
terization, and further it may be useful for classification, clustering, identification of class
affiliation of nucleotide sequences etc. with high precision.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a recent, various studies have been carried out to understand the characteristics of genomic sequences which are
too long and complex in nature. In 1990, Jeffrey proposed a method to visualize primary DNA sequence structure using
Chaos Game Representation (CGR) [1]. It provides the structure of DNA sequence of any length including entire genome in a
compact two dimensional plot (image) which possess different geometric patterns such as parallel lines, triangles, squares
and even some patterns show a fractal geometrical structure. Deschavanne and his coworkers in their study provided a link
betweenCGRs andgenomic signatures [2]. Thismotivated the researchers to apply CGRanalysis onDNA sequences to classify
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sequence segments, phylogenetic analysis, secondary structure of the genome, protein sequences etc. [3–8]. More recently,
J.J. Han and coworker have carried out the multifractal analysis of DNA sequence integrating the chaos game representation
and wavelet transform modulus maxima method [9].

Similarly, a large number of studies have been carried out in developing different methodologies to characterize the
correlation behavior and multifractal nature of a non-stationary time series. Until now many researchers have contributed
their work using the methods like R/S analysis, structure function, detrended fluctuation analysis, wavelet transform mod-
ulus maxima, average wavelet coefficient method, multifractal detrended fluctuation analysis, detrended moving average
method,wavelet based fluctuation analysismethods etc. For analyzing correlation behavior and fractal nature [10–17]. These
methods found applications in various fields ranging from finance, technological, biological and physical sciences [18–40].
Some of the abovementionedmethods have contributed a significant role in DNA sequence analysis [9,12,13,15]. Also some
of the one dimensional multifractal analysis methods were extended to analyze higher dimensional data sets [41–45].

Recently, it was reported that there exists cross-correlation behavior in simultaneously recorded data sets. Podobnik and
coworkers have developed a new approach namely detrended cross correlation analysis (DCCA) through which the cross
correlation behavior of any two non-stationary time series can be investigated [46,47]. Later, Zhou proposed a generalization
of DCCA called multifractal detrended cross correlation analysis (MF-X-DFA) to characterize cross-correlation behavior and
multifractal nature of two cross-correlated time series [48]. Jiang and his coworkers have also developed a method called
multifractal detrendedmoving average cross correlation analysis to study the cross correlation between two time series [49].
Using these above mentioned approaches the cross correlation behavior and multifractal characteristics studies have been
carried out in analyzing time series of physiology, financial, and natural sciences [50–59]. In the further research, most of
these one-dimensional time series methods on long range correlation and cross-correlation analysis have been extended to
study higher dimensional data sets [41,43,45].

Our main goal of this work is to study the multifractal cross-correlation behavior of coding and non-coding DNA
sequences whose lengths are not equal in size. Earlier studies on cross-correlation analysis between coding and non-coding
sequences were carried out using 1DMF-X-DFA, in which they have considered only a portion of DNA sequences with equal
lengths [59]. This procedure disregards the remaining portion of data to make the data with equal lengths to perform cross-
correlation analysis which may lead to biased results. In such case, a more appropriate approach is required to characterize
the cross-correlation behavior of the DNA sequences which are of unequal lengths.

In this paper, we propose a new approach combining the chaos game representation (CGR) theory and 2D multifractal
detrended cross-correlation analysis (MF-X-DFA)method to analyze any pair of nucleotide sequenceswhose lengths are not
equal in size. As a case study, we have analyzed the cross-correlation between the coding and non-coding DNA sequences of
some prokaryotes. Section 2 describes about CGR and MF-X-DFA procedure and Section 3 shares the result and discussion.
The conclusions to the study is given in Section 4.

2. Methodology

2.1. CGR of DNA sequences

The CGR is an algorithm which uses an iterative mapping technique to visualize the DNA sequences as an image that
reveals patterns of different structure. TheDNA sequence is consists of four nucleotidesA (adenine), G (guanine), T (thymine),
and C (cytosine) and then the CGR image is confined to unit square. Let us consider the length of the DNA sequences is L and
the vertices of the unit square is labeled by the nucleotide A(0, 0), T(1, 0), G(1, 1), C(0, 1). The position of each nucleotide can
be calculated by the iterative function system

Xi = 0.5(Xi−1 + Gix) (1)

Yi = 0.5(Yi−1 + Giy). (2)

Here Xi and Yi are the co-ordinates of the ith nucleotide and the position of the each nucleotide is calculated from the half
of the previous position but for the first nucleotide Xi−1 and Yi−1 are given by the center of the square (0.5, 0.5). Gix and Giy
represent the co-ordinates of the vertex of the each nucleotide. By repeating the above procedure the co-ordinates for all
nucleotides in a DNA sequence can be calculated and then plotted as CGR image which reveals different patterns.

2.2. Two dimensional MF-X-DFA method

The MF-X-DFA method was developed by W.X. Zhou to unveil the multifractal nature and cross-correlation behavior
between any one dimensional and two dimensional data sets [47]. In our work, we make use of 2D MF-X-DFA method to
analyze the CGR images. The following steps are the procedure of 2D MF-X-DFA method.
Step 1: Consider any two surfaces (images) x(i, j) and y(i, j) of identical sizes, where i = 1, 2, . . . ,M and j = 1, 2, . . . ,N .
Step 2: Then divide the surfaces into Ms × Ns disjoint square segments of the equal size i.e. s × s, where Ms = M/s and
Ns = N/s. Each segment of the surfaces is denoted by xv,w or yv,w such that xv,w(i, j) = x(lv + i, lw + j) and yv,w(i, j) =

y(lv + i, lw + j) for 1 ≤ i, j ≤ s, where lv = (v − 1)s and lw = (w − 1)s.
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Step 3: Each segment xv,w or yv,w is calculated as follows:

Xv,w (i, j) =

i
k1=1

j
k2=1

xv,w (k1, k2) and Yv,w (i, j) =

i
k1=1

j
k2=1

yv,w (k1, k2)

here 1 ≤ i, j ≤ s.
Step 4: Now the detrended covariance of any two segments is calculated as:

Fv,w (s) =
1
s2

s
i=1

s
j=1


Xv,w (i, j) − X̃v,w (i, j)

 
Yv,w (i, j) − Ỹv,w (i, j)


(3)

where X̃v,w and Ỹv,w are the local polynomial trends ofXv,w and Yv,w respectively. The trend function is chosen as the simplest
plane ũ (i, j) = ai + bj + c which is adopted for our analysis.
Step 5: The qth order fluctuation function of detrended cross-correlation Fxy (q, s) is obtained by squaring and averaging
over all segments,

Fxy (q, s) =


1

Ms Ns

Ms
v=1

Ns
w=1


Fv,w(s)

q/21/q

. (4)

According to l’Hospital’s rule when q = 0, we have the fluctuation function as

Fxy (q, s) = exp


1

2Ms Ns

Ms
v=1

Ns
w=1

ln

Fv,w (s)


. (5)

Here ‘q’ is the order of the moment that can take any real value.
Step 6: The steps 2–5 is repeated for variable scale size ‘s’ for different values of q. The power law behavior of the data is
obtained by analyzing the fluctuation function.

Fxy (q, s) ∼ shxy(q). (6)

As is known if the cross correlated surfaces show monofractal behavior then the scaling exponents hxy(q) values behave
independent of q values. For the multifractal behavior the hxy(q) values depend on q values. If the two data set are same
i.e. x = y then this 2D MF-X-DFA is same as 2D MFDFA. Further for positive q, hxy(q) describes the scaling behavior of the
segments with large fluctuations. On the contrary, for negative q, hxy(q) describes the scaling behavior of the segments with
small fluctuations.

The multifractal behavior of the cross-correlated data sets can also be studied by evaluating the fxy(α) spectrum. The
Legendre transform of τxy(q) gives values of fxy(α):

fxy(α) ≡ qαxy − τxy(q). (7)

Here τxy(q) = qhxy(q) − Df , for the 2D CGR images in our study we consider Df = 2. Also the values of αxy is obtained
from αxy = dτxy(q)/dq. The strength of the multifractality can be calculated from the width of the fxy(α) spectrum. Broader
the spectrum stronger the multifractality and the narrower spectrum depicts weak multifractal behavior.

3. Results and discussion

In our study, we consider the genomic sequences of eight prokaryotes in which two are from Archaea and six from
Bacteria. The data was obtained from the EMBL-EBI database (http://www.ncbi.nlm.nih.gov/). The detailed information
about the phylum, species and strain are given in Table 1. We have separated the coding sequences (CS) and non-coding
sequences (NCS) using MATLAB programming and found the lengths of the CS and NCS are unequal in size. The obtained
CGRs of CS and NCS in their present form are not suitable to perform computational analysis because it is merely a graphical
representation. So, we have used the mathematical representation of CGR (i.e. frequency chaos game representation (FCGR)
which is a numerical matrix) to perform the 2D MF-X-DFA analysis. To obtain the FCGR we have divided the CGRs into
2k

×2k grids and each square grid is considered as an element in the FCGRmatrix. The total number of points present inside
each square grid is used as matrix element which is nothing but the number of occurrences of each length k oligonucleotide
present in the sequence. In our analysis, we have used k = 10, so that we get the FCGR matrix with size 1024 × 1024. To
perform the 2DMF-X-DFA analysis, the size of the CGR images should be at least 8× 8 (i.e. k >= 3) such that the minimum
scale‘s’ will be 1/4th size of the CGR image (i.e. s = 21). The major advantage of the Chaos Game Representation method is
that it can represent any length of a DNA sequence including entire genomes in a form of an image. This approach helps one
to make an image of equal size of coding and non-coding DNA sequences even though the lengths of sequences are not in
equal size.Wehave applied the 2Dmultifractal detrended cross correlation analysismethod on the calculated FCGRmatrices
of CS and NCS sequences of all eight data sets. For illustration purpose, the CGR images of the coding and non-coding DNA
sequences of Aeropyrum pernix are shown in Fig. 1.

http://www.ncbi.nlm.nih.gov/
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a b

Fig. 1. CGR images of Aeropyrum pernix (a) coding sequences (b) non-coding sequences.

Table 1
List of eight prokaryotes considered for analysis of which two are archaea and six bacteria.

Domain Phylum Species Strain Short name Length of data

Archaea Crenarchaeota Aeropyrum pernix Aeropyrum pernix K1 uid57757 Apernix 1669696
Archaea Euryarchaeota Archaeoglobus fulgidus Archaeoglobus fulgidus Afulgi 2 178400
Bacteria Actinobacteria Mycobacterium tuberculosis Mycobacterium tuberculosis H37 Rv uid57777 MTb 4411532
Bacteria Spirochetes Borrelia burgdorferi Borrelia burgdorferi CA382 ui d214794 Borrelia 910736
Bacteria Proteobacteria Haemophilus influenza Haemophilus influenza KR494 ui d219323 Hinflu 1856176
Bacteria Proteobacteria Bacillus subtilis Bacillus subtilis PY79 uid229877 Bsubtil 4 033459
Bacteria Hyperthermophilic Thermotoga maritima Thermotoga maritima Tmarit 1 869644
Bacteria Hyperthermophilic Aquifex aeolicus Aquifex aeolicus Aquifex 1551335

From our analysis, we observe that the fluctuation function, Fq(s) increases linearly as the size of the scale s increases for
all values of q varying from −10 to 10 with step size 0.2 showing existence of power law behavior. The cross-correlation
analysis was performed between CS–CS, CS–NCS, NCS–NCS sequences respectively. From the calculated scaling exponents,
multifractality nature is evident as we observe that the hxx(q), hyy(q) and hxy(q) values for all data sets depend on q values. In
thiswork, the values of hxx(q) represents the CS–CS analysis, hyy(q) represent the NCS–NCS analysis, and hxy(q) represent the
scaling exponents of cross-correlation between CS and NCS data sets. The calculated h(q) values for all the data sets, the h(q)
values decreasing with increasing q values and this is evident for multifractal nature. This is clearly shown in Fig. 2. We also
observed from the calculated h(q) values of CS–CS andNCS–NCS analysis, for negative q values the hxx(yy)(q) values (i.e. small
fluctuations) of CS sequences are greater than NCS sequences for all the data. Similarly for large fluctuations i.e. positive q
values, the hxx(yy)(q) values of CS are greater than that of NCS except for the subjectsA. Pernix, andMycobacterium Tuberculosis
where hxx(yy)(q) values of NCS sequences are greater than the CS sequences. From the results of cross-correlation analysis
between CS–NCS, one can observe that hxy(q) values of large fluctuations (i.e. negative q values) are lying between the CS–CS
and NCS–NCS correlation analysis. We also generated the singularity spectrum for all the data sets and the resulted broader
spectrum indicates the existence of strong multifractality nature and this is evident from Fig. 3. It is also observed from the
multifractal spectrum that for the species Bacillus subtilis, Haemophilus influenza, and M. tuberculosis, the fxy(α) spectrum
lies in between the fxx(α) and fyy(α) spectrum, where as in all other species we find existence of cross over.

It is worth emphasizing Cristina stan and co-workers has carried out a study on similarity analysis between two DNA
sequences using chaos game representation method [60]. In their work, they set a condition for partitioning the cell, if the
value of k is too large then many of the FCGR matrix elements may have zeros, to avoid such situation the maximum value
of k can be calculated by making use of the formula given below;

kmax = int


lnN
2 ln 2

− 1


(8)

where N is the total length of the sequence. We have carefully analyzed the data using above formula for fixing the suitable
‘k’ values and also for different ‘k’ values such as 7, 8, 9 & 10. We found that there is no significant change in the results
of h(q) and f (α) spectrum. This emphasizes that there will not be any difference in the results if one chooses arbitrary ‘k’
values. But the above mentioned formula may be useful to reduce the computation time for very large data.
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Fig. 2. The scaling exponent values of hxx(q), hyy(q), hxy(q) for different q values show non-linear behavior, which implies the presence of multifractal
behavior for all bivariate time series.
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Fig. 3. The f (α) spectrum shows the strength of multifractality of all bivariate time series is shown through. The broad spectrum implies strong
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From this multifractal analysis, we found that CGR images play a vital role in converting the DNA sequences into images
that provide statistical information. Apart from this it also helps to construct the CGR images of equal sizes even if the length
of nucleotide sequences of different species are unequal to perform the 2D MF-X-DFA analysis. Consideration of full length
of DNA sequences for cross-correlation analysis may provide results with high accuracy when compared to analysis on 1D
MF-X-DFA by chopping the nucleotide sequences to have equal lengths for analysis.

4. Conclusion

In conclusion, we have presented a new approach combining CGR and 2D MF-X-DFA and have applied this method to
study the multifractal cross-correlations of coding and non-coding DNA sequences of eight prokaryotes. We also found
CGR is an efficient tool that helps in considering the unequal lengths of DNA sequences for multifractal cross-correlation
analysis and this is evident fromour study.We suggest this integrative approachmay find useful in studies like classification,
clustering, identification of class affiliation of nucleotide sequences, protein sequence etc.
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