The Performance Impact of Advance
Reservation Meta-scheduling

Quinn Snell, Mark Clement, David Jackson, and Chad Gregory

Brigham Young University, Provo, Utah 84602
{snell, clement, gregory }@cs.byu.edu jacksond@mhpcc.edu

Abstract. As supercomputing resources become more available, users
will require resources managed by several local schedulers. To gain ac-
cess to a collection of resources, current systems require metajobs to
run during locked down periods when the resources are only available
for metajob use. It is more convenient and efficient if the user is able
to make a reservation at the soonest time when all resources are avail-
able. System administrators are reluctant to allow reservations external
to locked down periods because of the impact reservations may have on
utilization and the Quality of Service that the center is able to provide
to its normal users. This research quantifies the impact of advance reser-
vations on and outlines the algorithms that must be used to schedule
metajobs. The Maui scheduler is used to examine metascheduling using
trace files from existing supercomputing centers. These results indicate
that advance reservations can improve the response time for metajobs,
while not significantly impacting overall system performance.

1 Introduction

Recently, there have been a number of research groups focusing their efforts on
utilizing the combined resources of multiple supercomputing facilities [1-4]. The
motives for this avenue of research are obvious. First, and perhaps foremost, is
the belief that the proper combination of resources and their aggregate processing
power will yield a system that is both scalable and potentially more efficient. A
system such as the one proposed in this paper would provide enhanced scheduling
services for at least three kinds of jobs: those that require more resources than
are available at any one site, jobs that require a combination of resources that
are not available at any one site, and finally, jobs from users that desire a better
overall response time than could be obtained by limiting their jobs to using the
resources found at any single site.

Regardless of the job type, using the combined resources of more than one
site requires cooperation that is not inherent in local resource scheduling sys-
tems. A system that coordinates and works with the local schedulers is required.
Such a system is often called a metascheduler. The metascheduler makes this
aggregation of resources available to what are termed throughout this paper as
‘metajobs’. Each metascheduler maintains a job queue to which these metajobs
are submitted by users where they are stored until they complete. A metajob can

be simply a normal batch job submitted to the meta scheduler or it may be mod-
ified to utilize special functionality that can only be found in a metascheduling
environment. There are three key differences between a metajob and a standard
batch job: 1) The machine or local scheduler under which the metajob will run
is not known at job submit time. 2) The metajob may contain a utility func-
tion which instructs the metascheduler as to what aspects of the resources are
most important to it. These aspects may include cost, machine speed, time until
availability, etc. 3) The resources utilized by the metajob may span more than
one machine or local scheduler.

Some current metascheduling systems work by dedicating a set of local re-
sources to be used and scheduled by the metascheduler. With these metasched-
ulers, local management and administration staff determine both a maximum
amount, of resources allowed for metascheduled work and a set of timeframes
during which these resources can be used. During each of these timeframes, the
metascheduler assumes full control of all allowed resources, preventing their use
by locally submitted jobs. These resources remain unavailable regardless of the
metascheduled workload. Supercomputer system managers have reported aver-
age utilizations ranging between 5% and 25% on those nodes that are dedicated
for metacomputing systems. Due to the fragmentation of resources, low utiliza-
tions occur even when there is a backlog of local jobs. A metascheduling system
based on this model clearly wastes valuable resources, significantly lowering the
overall system utilization and increasing the average job turnaround time for
local jobs.

This dedicated resource metascheduler schedules resources as if it were a local
scheduler, according to its own private set of policies and priorities. It does not
leverage the knowledge or capabilities of the local scheduler. The local scheduler
has, in reality, completely relinquished control of the resources that have been
dedicated to the metascheduler. This brings up more issues. First, lower uti-
lization can be expected since the local compute resources are now fragmented.
Additionally, the resource fragments are exclusive of each other meaning that
those resources dedicated for metascheduled jobs cannot be used by locally sub-
mitted jobs even if they are idle; the same holds true for metascheduled jobs and
resources dedicated for local workload. Also, under existing ’dedicated resource’
metaschedulers, each resource fragment is scheduled according to an indepen-
dent, private set of policies. There is no cooperation between the local schedulers
and metaschedulers, and there is no knowledge of each others policies, priori-
ties, or workload. In consequence of these conditions, there is no opportunity
for cross-fragment scheduling optimizations such as backfill or intelligent node
allocation.

Ursala, a metascheduler developed at Brigham Young University and used
for the research described in this paper, cooperates with the local schedulers
and introduces metascheduled jobs into the locally-produced workload. A sys-
tem capable of doing this can achieve better overall utilization of resources be-
cause full information and control are maintained at the local scheduler level.
Local scheduling optimizations such as backfill can then occur. Instead of ded-

icating the maximum block of resources allowed by the administrator, Ursala
intelligently reserves only those resources that are required for existing, queued
metajobs.

Ursala operates by breaking up a metajob into a number of localized sub-
jobs, each of which is submitted to a different local resource manager. With
parallel jobs, it is imperative that all resources required by the entire job be made
available at job start time. The metascheduler must be able to determine a time
when all of the needed resources are available. Each local scheduler must also be
able to guarantee the availability of the needed resources for the corresponding
sub-job at that determined time.

The guarantee of providing specific resources at a specific time is typically
termed an advance reservation. Foster et. al [5] report that currently there is
“no widely deployed resource management system for networks, computers, or
other resources” that supports advance reservations. This is no longer the case.
The Maui scheduler[6, 7] has extensive support for advance reservations and is
the local scheduler used in this research.

Creating coinciding advance reservations on each of the needed systems is
not as simple as using a block of dedicated resources. However, the advantages
of using such a system are tremendous. First, there is no fragmentation and
there are no resources sitting idle while the metascheduled workload is low. The
metascheduler only reserves the resources it needs exactly when it needs them.
Thus, the local scheduler is allowed to utilize these resources at all other times
and the overall utilization of the system is consequently higher. Each local sched-
uler is also able to enforce its local policies for all jobs. There are still questions
which must be answered about a metascheduler that uses advance reservations
to launch jobs across multiple systems: “What effect does metascheduling using
advance reservations have on overall system utilization?”, “What problems arise
when trying to create coinciding reservations?”, and “What impact does this
type of metascheduling have on both local and metajob turn around time?”

This paper will deal with the issues listed above. Sections 2 and 3 discuss
advance reservations and metascheduling respectively. The issues that surround
metascheduling based on advance reservations are then discussed in Section 4.
Finally, we present our metascheduling system and the experimental results we
have obtained to answer the questions posed above.

2 Advance Reservations

In the most general sense, an advance reservation is a scheduling object which
reserves a group of resources for a particular timeframe for access only by a
specified entity or group of entities. These configurable aspects of an advance
reservation can be set to support a metajob. The settings required are listed
below.

1. A reservation must reserve exactly the type and amount of resources re-
quested by the job.

2. A reservation must reserve these resources for use at the requested start
time.

3. A reservation must reserve these resources for the wallclock limit of the
metajob.

4. A reservation must reserve these resources for use only by the specified meta-
job.

5. The local scheduler must guarantee that the metajob will only run in the
job reservation even if resources exist elsewhere which would allow the job
to run earlier.

Reservations which meet the above configuration are termed a job reserva-
tion. While local schedulers may support advance reservations with additional
attributes and features, the attributes listed above are the minimal set required
to properly reserve resources for a metajob.

Advance
n %]
%]
s} 8 Reservation
Z z
N »
Time 4 Time 4
job to be job to be
placed placed
a) no advance reservations b) with an advance reservation

Fig. 1. Comparison of scheduling with and without advance reservations

Scheduling in the presence of advance reservations is significantly more com-
plex than normal scheduling. Without advance reservations, a scheduler simply
sets a policy of not scheduling any job that will delay the start time of the high-
est priority job in the queue. As long as that policy is maintained, the scheduler
is free to take jobs from other parts of the queue and backfill the nodes. The
scheduler need only consider if adequate resources exist at the present time to
start a given job and need not determine if a job will fit on a given set of nodes
in the time dimension.

Scheduling with advance reservations and guaranteed start time requires that
the scheduler be capable of not only fitting jobs into the node space dimension,
but also fitting them into the time dimension. This potentially involves analyzing
resource dedication to other jobs both before and after the time of interest.

Figure 1 compares scheduling with and without advance reservations. Note that
without advance reservations, the future in the time dimension is open. With
only a single advance reservation in place, the scheduler must now consider if
a job will have enough resources available and if the resources will be available
long enough for the job to complete before the resources are required by the
future reservation. This is a much more complex decision.

Despite the added complexity, there are numerous advantages associated with
advance reservations. Once reservations are incorporated, a scheduler can per-
form reservation-based deadline scheduling. The scheduler can guarantee the
start time of a given job so that job start time can be coordinated with data
availability. Schedulers can backfill around reservations to minimize the impact
of dedicating resources to jobs, users, or projects. These functions yield a higher
overall level of service to all users. This paper will show that while advance reser-
vations can be utilized by the local scheduler to provide a number of local ser-
vices, their greatest value may lie in their use in the metascheduling realm where
they can be built upon to provide a new and powerful class of metascheduling
services.

3 Meta-scheduling

Meta-scheduling can be loosely defined as the act of locating and allocating
resources for a job on a metacomputer. Smarr and Catlett [8] define a meta-
computer as the collection of resources that are transparently available to the
user via the network. Thus a metascheduling system should make a collection of
resources transparently available to the user as if it were a single large system.
The key in this definition is that the user need not be aware of where the re-
sources are, who owns the resources, or who administers the resources in order
to use them. The scheduling issues that surround the creation of such a system
is the focus of this section.

From the point of view of the metascheduler, metajobs fall into two ba-
sic categories: those that run on a single machine, and those that span multi-
ple machines. The first category of jobs require less effort on the part of the
metascheduler. The metascheduler simply locates which local scheduler can pro-
vide the greatest utility to the metajob and submits the metajob into that local
scheduler’s workload queue. The local scheduler takes care of the rest. Meta jobs
that span multiple local schedulers introduce new issues that are not found in
local scheduling systems.

The first step in developing a metascheduling system is to define the types
of scheduling that will be performed. The following three classifications can be
applied to metajobs.

1. Specified Co-Allocation: The user specifies all resource requirements includ-
ing exactly which processors and resources are required. For example a user
may specify that telescope X, 512 IBM SP2 processing nodes from site Y,
and an SGI graphics pipe from site Z are needed. The metascheduler would

then find a time when all of the resources were available for the user’s pri-
ority. In this case, all requests are for particular resources and locations are
defined by the user. Reservations are made for each required resource at that
time. This is the easiest kind of scheduling and little information need be
passed between the scheduler and the metascheduler. Job initialization and
resource management issues are all handled locally.

2. General Co-Allocation: This type of scheduling differs from specified co-
Allocation in that the user does not specify where to run each part of the
job. The user merely specifies the needed resource types and the metasched-
uler decides when and where the best resources are located, reserves those
resources at that time and runs the requested job. For example, the user’s
specification of a SGI graphics pipe could yield any SGI graphics pipe known
to the metascheduler.

3. Optimal Scheduling: The extreme case in scheduling is to determine the best
location for every resource in the job. Using knowledge about machine and
network performance, the metascheduler determines the placement that opti-
mizes cost, performance, response time, throughput, and other factors. This
type of metascheduling requires up to date performance knowledge from each
part of the metacomputer as well as a characterization of the application’s
network and CPU requirements. For example, if a user simply requested 100
processors, the scheduler would determine the best 100 processors to use,
even if that means fragmenting the job across supercomputer centers.

These three types of scheduling are ordered according to the level of intel-
ligence that is required of the metascheduler. Specified Co-Allocation requires
only that the metascheduler optimize in the time dimension, whereas the other
categories require that the metascheduler make intelligent decisions in both time
and space. Category 2 and category 3 scheduling can be performed by allowing
the user to specify a utility function. The metascheduler then locates resources
for the job such that the utility function is maximized. This type of scheduling
will not be considered here, but is part of ongoing research.

Because all three categories of metascheduling are dependent upon advance
reservations, it is critical to determine the impact of these reservations on lo-
cal workload and their effectiveness in coordinating metajob components. The
remainder of this paper will discuss Specified Co-Allocation using advance reser-
vations and their effect on local and metascheduler performance.

3.1 Meta-scheduling using Advance Reservations

As stated above, the goal of metascheduling is to reserve groups of resources from
different resource management systems. To accomplish this goal, a metascheduler
must create multiple, coinciding advance reservations. Creating these advance
reservations can be reduced to the resource allocation problem in distributed al-
gorithms research [9]. It is well known that such problems introduce possibilities
of deadlock and livelock. Before discussing these issues, we consider the steps
that a metascheduler must take to create coinciding reservations.

. Determine available resources at each site.

. Select the resources and time frame.

. Create the advance reservations at each site.

. Stage the appropriate job components to each local scheduler.

= W N =

Determination of the available resources can be performed in many different
ways. In the simplest sense, a query is performed on the local scheduler asking
if resource set X is available at time Y. A much more flexible metascheduling
system may be created if the metascheduler can ask ’what resources are available
for job X in the time range A to B?’ and the local scheduler responds with all
ranges of acceptable times and resource sets that can be made available while
still meeting local scheduler policies. For example, ’8 nodes available from now
until 8 hours out and 16 nodes available from 8 hours out until 24 hours out’.
For metajobs which must span local schedulers, the metascheduler must perform
an intersection of the returned start time ranges to determine the possible start
times. The metascheduler could then automatically select the optimal metajob
start time using the job’s utility function or present the possibilities to the
submitting user for a final decision.

For example, perhaps a scientist would like to allocate resources at three
sites during working hours for interactive use. Referring to Figure 2, if the local
schedulers can only answer yes or no to a proposed start time, the metascheduler
must then propose a new start time if no appropriate times are available. This
is shown in the first column of the figure. Flexibility is added when resource
availability time ranges are returned as shown in the second column. Now the
metascheduler can find the intersecting time ranges and present that to the
scientist. However, there may be no appropriate intersecting time, thus forcing
the scientist to propose a new start time. If a list of start time ranges is returned,
the scientist may see that although there are no appropriate times today, there
is a time the next day. This eliminates the need for the scientist to begin the
process over again with a new proposed start time.

yes/ no Range Range Li st
System 1 yes [I
System 2 no [I N
System 3 yes . I I
Resul t no | Il 1l
Ti me ! Time

Fig. 2. Comparison of possible query results returned from local schedulers.

Deadlock and livelock issues are introduced because the metascheduler must
gather resource information and make reservations on several local schedulers.
The metascheduler receives available time ranges, then determines the appropri-
ate start time and resources for the job before making the reservations. Because
there is a brief delay between collecting the resource availability information
and making the reservations, it is possible that the availability of the resources
under the control of each local scheduler has changed. This could be due to
local scheduling or due to reservations created by a competing metascheduler
attempting to create advance reservations in the same time frame.

The potential for deadlock is brought about because all of the four deadlock
conditions exist [10]. Eliminating one of the four conditions eliminates deadlock.
Perhaps the easiest condition to eliminate is Hold and Wait. In a metascheduling
environment, this means that as advance reservations are created, if any reser-
vation cannot be made due to recent resource availability changes, all existing
reservations for that job must be cancelled. This policy is logical in the case
of metascheduling since the local reservations are for a specific time and the
job must start on all resources at the same time. Thus deadlock situations are
eliminated by forbidding Hold and Wait.

Metascheduler A Metascheduler B
[eNeoXol [eXeoXe) [eNeoXeol [eNeXeo]
[eXoXe) [eXeoXe) [eXoXe) [eXoNeo)

~4 -
Scheduler Scheduler
Resource Resource
Manager Manager

OO OO OO OO
OO O OO O

Site A Site B

Fig. 3. Livelock scenrio. Metaschedulers A and B are competing for resources at sites
A and B.

Livelock on the other hand is much more complex. Two separate metaschedul-
ing systems can mutually interfere and cause changes in the state of the local
schedulers such that each metascheduler is never able to create coinciding reser-
vations on the local machines. For example, consider the scenario depicted in
Figure 3. Both metaschedulers need resources at sites A and B. If either site
grants the needed resources to one of the metaschedulers, the needed resources

will not be available for the other metascheduler. The resource query and reser-
vation allocation are separate steps. If the metaschedulers proceed through the
steps by approaching the local schedulers in opposing order, they will mutually
interfere. Both metaschedulers will see that the needed resources are available,
and will request reservations from their corresponding sites. However, when the
metaschedulers request from opposing sites, they will both fail and release their
other reservations. The process will then begin again. If the metaschedulers con-
tinue to request, they will most likely get out of sync eventually and one will
succeed, thus breaking the livelock. The metaschedulers may go through many
of these iterations though.

There are many research areas that have similar livelock characteristics. In
particular, the Ethernet [11] CSMA/CD networking protocol has a random ex-
ponential backoff policy for dealing with collisions on a shared network. When
utilization on the network is high, much of the network bandwidth is spent in
collision detection and backoff, resulting in degraded performance. One major
difference, however, is that the Ethernet possess only a single shared resource
while the metascheduling problem has multiple shared resources, increasing the
problem’s complexity.

The main cause of the livelock problem is that the local system can change
state between the metascheduler’s resource query and reservation phases. The
state changes can come from two sources, new resource manager information (i.e.
a node going down) and new reservations created by competing metaschedulers.
While nothing can be done to control actual resource state changes, steps can be
taken to eliminate the possibility of resource state due to other metaschedulers.
One solution is to have the resource query lock the reservation state of the local
scheduler for a period of time preventing other metaschedulers from creating
reservations during this time. The locked time would be just long enough to al-
low the locking metascheduler to process the resource information and make all
needed reservations. This locking of reservation state is one form of a courtesy
reservation. A timeout can be imposed to eliminate the case of a courtesy reser-
vation locking out the entire machine for long periods of time. If the reservation is
not made before the timeout, there is no guarantee that the resources will still be
available. However, these courtesy reservations introduce several problems into
local scheduling algorithms. It is hard to determine the potential effects of cour-
tesy reservations on scheduler performance. Further research is being conducted
to examine the tradeoffs between courtesy reservations and stateless reservations
combined with a backoff policy.

3.2 The Maui Scheduler

The Maui scheduler is currently in use at many supercomputing facilities and is
ideal for this research. The Maui scheduler supports advance reservations in the
form previously described allowing the scheduler to guarantee a job’s start time.
A metascheduling interface allows very flexible resource availability queries to
be performed. The metascheduler may specify the job in great detail or it may
simply specify the number of resources and the amount of time required. Replies

to these queries are returned as a list of start time ranges and associated resource
sets. As discussed previously, this yields great flexibility in determining when and
where to start a given metajob.

Perhaps the most important feature of the Maui scheduler with respect to
this research is its ability to run in simulation mode. Given a trace file of an
actual workload, the Maui scheduler can simulate the scheduling of the workload,
allowing the administrator to experiment with different parameters and attempt
to improve scheduler efficiency. The scheduler steps forward in discrete amounts
of time. It can be told to single step through these discrete time blocks or to
advance through a number of them. Another unique feature valuable to this
research is the ability to externally insert new jobs and reservations into the
simulated workload as the simulation is running.

3.3 Brigham Young University Meta-scheduler (Ursala)

At Brigham Young University, we have created Ursala, a metascheduling system
which creates coinciding advance reservations on participating local schedulers.
The metascheduler communicates with each local scheduler, for this research,
Maui, using the following steps:

1. Ursala contacts each Maui scheduler requesting resource availability and cost
information for a specific job and time frame.

2. Each Maui scheduler incorporates existing reservation, resource, policy, and
priority information to determine when resources could be made available
for the specified job.

3. Each Maui scheduler reports its finding to Ursala as a list of start time
ranges, costs, and resource sets.

4. Ursala receives the lists of start time ranges from each Maui scheduler, com-
putes the intersection of the range lists and determines a best start time and
collection of resources.

5. Ursala attempts to create needed reservations for this job on each Maui
scheduler. If any reservation attempt fails, Ursala releases all existing reser-
vations for this job, and after a "backoff’ time, returns to step 1. If all reser-
vations succeed, Ursala advances to step 6.

6. With all reservations made, Ursala submits the proper job components to
each local resource manager.

The current design implements a reservation release and backoff algorithm to
handle the livelock possibility described earlier. Figure 4 is a representation of
the basic architecture. Ursala communicates with the local scheduler to obtain
resource state information and to create advance reservations. It also interfaces
to the local resource management systems for submitting metajob components.
Ursala currently supports three scheduling modes described earlier: Specified
Co-Allocation, General Co-Allocation, and Optimal Scheduling.

User (< >

Meta-scheduler

v A \ g
S A4 4
Scheduler Scheduler Scheduler
Resource Resource Resource
Manager Manager Manager

OO0 QOO0 QOO0
OO OO 0O

Fig. 4. Meta-scheduler architecture.

4 Experimental Results

The goal of this research is to determine what effects advance reservations have
on local scheduling performance and system utilization. To accomplish this, a
series of experiments were designed. In this section, we present the experimental
environment and results.

In each experiment, the Maui scheduler was used in simulation mode as
the local scheduler. Simulation traces were provided to simulate a 192 node
IBM SP system with memory sizes ranging from 128 to 512 MB per node.
Workload traces representing several weeks of actual workload were used for each
simulation run. Each workload trace contains every scheduling aspect relevant to
a job, including submit time, submitting user and group, resource requirements,
wallclock limit, and actual run time. Using this information, the Maui scheduler
is able to introduce the job into the queue at the recorded queue time as the
submitting user allowing local scheduler throttling policies to be enforced (e.g.
Max Jobs Per User). At that point, the job is scheduled according to the policies
and algorithms that currently set for the Maui scheduler. If no changes are made
to the configuration of Maui, the simulation of the trace will yeild the same
resulting schedule as if the jobs were scheduled and run on the real system.

The job traces used for this experiment contained a mix of jobs requesting
between 1 and 128 nodes and requiring between 2 minutes and 36 hours to
run. The trace represents a period of 2 weeks at the Maui High Performance
Computing Center. See [7] for more details about the job trace used. For each
experiment, a simulation time period of 10 days was run and analyzed. Since
every scheduling-relevant aspect of node resources and jobs is captured in the
traces, differences between simulated and actual ’real world’ runs are minimal.

To represent the metajobs, a random set of batch jobs were extracted from
the simulation job traces. This yeilds a sampling of actual jobs rather than
creating a hypothetical set of jobs for metajob submission. The remaining jobs
were then run in the simulation mode of Maui to get baseline utilization and
XFactor statistics. A coordinator process was created to read the metajob trace
file and advance simulated time for both Ursala and the participating Maui
schedulers. At the appropriate times, this coordinator process submitted jobs
from the metajob trace file into Ursala’s queue. Because Ursala only sees its
metajob queue and information returned via its interfaces to the local schedulers,
it cannot tell that it is running in a simulated environment and behaves exactly
as it would if run in ’production’ mode. As the simulation is advanced, statistics
from each Maui scheduler are collected and analyzed to determine performance
impact of the introduced metascheduled workload.

Utilization as a Function of Meta Scheduling

96
92 *-

- \/‘\‘\‘\

. H\/\\A\\

80

Percent Utilization

76

72

1 2 3456 7 8 91011121314 15
Percent Meta-Scheduled Jobs

Fig. 5. The effect of advance reservations on system utilization.

The first experiment is a detailed examination of the effects of advance reser-
vations. Ursala was used to insert metajobs requiring advance reservations into
the Maui simulation. Initially, no metajobs were inserted, the entire simulation
was run to completion, and statistics were gathered. The simulation was then
run repeatedly, increasing the percentages of metajobs inserted into the work-
load mix in each run. Figure 5 shows the resulting system utilization graph for
this experiment. Note that, as the percentage of metajobs increases, the over-
all system utilization declines. This is expected due to the added constraint of
a guaranteed start time for each metajob. As a general rule, every added con-

XFactor as a function of Meta-Scheduling

29
2.8
27
2.6

X-Factor
N
N

2:3 M —
2.2
2.1

12 3 45 6 7 8 9 1011 12 13 14 15
Percent of Meta-Scheduled Jobs

Fig. 6. The effect of advance reservations on expansion factor.

straint will decrease scheduling flexibility and thus decrease resource utilization.
This constraint is no exception. Jobs requiring a dedicated start time fragment
the scheduler’s time space as well as its node space making it more difficult for
the scheduler to utilize idle resources. In addition, due to inaccuracies in user’s
wallclock limit estimations, most jobs will complete early. While normal work-
load can take advantage of the now available resources by being started earlier
than originally planned, metajob components cannot since doing so would cause
this component to start before the metajob’s other components. Consequently,
these resources may go unused.

As previously shown in Figure 1, when advance reservations are added to the
workload mix, the scheduler must fit jobs into a two-dimensional mapping. The
optimal placement of jobs into this mapping can be reduced to a two-dimensional
bin packing problem which is NP-complete[12]. As more advance reservations are
added to the mix, placing backfill jobs into the map becomes more difficult. Thus,
holes are created and the system utilization goes down. If the accuracy of job
run-time estimates were improved, backfill job placement would also be more
accurate and somewhat alleviate this effect, but not eliminate it.

The average job expansion factor was also recorded in this experiment, and
the resulting graph is shown in Figure 6. The expansion factor is a measure of
job turnaround time. While the canonical definition of expansion factor is (1 +
(QueueTime/WallClockLimit)), Maui scheduler uses a modified version of this
to incorporate the affect of wallclock limit inaccuracies, namely, (QueueTime +
RunTime)/WallClockLimit. Regardless, the expansion factor calculation scales

Locked Down versus Meta-Reservation Scheduling
94
c 92 >
o 84 ——
o PR
g % " MetaR d
elareserve:
g 80 = 7 Utiization [
& 8 _m_ Locked Down
76 Utilization —
74 ‘ ‘
1 2 3 4 5 6 7 8 9
Percentage of Meta-Reserved Jobs Submitted

Fig. 7. Comparison of metascheduling based on advance reservations vs. locking down
the resources.

the job’s actual turnaround time by the job’s requested length. Since metajobs
increase the number of holes in the two-dimensional node-time map, it becomes
harder to backfill. This decreases utilization and increases the average expansion
factor, as is reflected in the graph. As the percentage of metascheduled jobs
increases, the average expansion factor also increases because QueueTime is
increased.

Experiment two is a direct comparison between advance reservation and ded-
icated resource based strategies for metascheduling. As described before, current
"dedicated resource’ metascheduling systems lock down a set of resources to be
used by the metascheduler for a specified time frame each day. The findings of
this research suggest that scheduling advance reservations for metajobs is more
efficient than the blocked dedicated resource approach. The graph in Figure 7
shows the system utilizations of the two approaches. In this experiment, the sys-
tem in question controlled 192 nodes. For the locked down node metascheduling
strategy, 48 of the nodes were blocked out for 8 hours each day for the metasched-
uled jobs. This was compared to a system using Ursala to schedule advance
reservations for the same jobs. The number of metascheduled jobs increased in
each simulation such that 1% metascheduled jobs corresponds roughly to 10%
utilization of the dedicated nodes. Since we are using 25% of the nodes for 1/3
of each day, 8.3% metascheduled load would be roughly 100% utilization of the
locked down nodes. With a small percentage of metajobs, advance reservation
metascheduling yields much higher utilization. Larger percentages of metasched-

uled jobs bring the two curves closer together, and finally, the dedicated node
strategy will result in slightly higher overall utilization. However, it should be
noted that the utilization assigned to the block of dedicated metascheduler re-
sources was assigned arbitrarily in this experiment, i.e. the utilization on the
blocked nodes was increased rather than attempting to schedule an increased
metascheduling workload onto these resources. This removed the issues of frag-
mentation and packing metascheduled workload. In reality, since both the local
workload and the metascheduled workload contained a similar mix of jobs, but
the metascheduled resources were relatively smaller, the metascheduler would be
able to obtain a system utilization which approached but did not exceed that ob-
tained by the local scheduler. Also, since average system utilization is generally
proportional to (average job size) / (total resources available), neither the local
scheduler nor the metascheduler would be able to obtain the level of utilization
obtained when the resources were not fragmented.

Average Queue Time with Multiple Schedulers

140+
130

120
110

100 .

90 i
80
70

60
50

r/\

minutes

Average Queue Time in

1 2 3 4 5
Number of Schedulers

Fig. 8. Meta-scheduled job queue time comparison using a single local scheduler vs.
using multiple local schedulers.

The final experiment is set up to show the benefits of metascheduling using
the resources at multiple sites. In this case, Ursala was connected to multiple
Maui schedulers; each running a different simulation trace file. Ursala processed a
job trace using a simple ’ASAP”’ utility function. Each metajob in this experiment
only required resources at a single site. This allowed Ursala to minimize queue
time for each metajob and showcase the benefits of such an approach.

The graph in Figure 8 shows the average queue time for the metajobs as
more local systems are added to the simulated metacomputer. It is clear that
as more systems are added, the probability of finding an earlier start time for
a metascheduled job increases even though each local system maintains a high
local system utilization. This is due to the fact that there is a greater probability
of finding an appropriate sized hole for the metascheduled job earlier on one of
the local systems. Thus the queue time for the metajobs decreases.

5 Conclusion

An advance reservation based metascheduling system provides significant ad-
vantages over a metascheduler based on blocked resources dedicated to metajob
usage. Such a system allows metajobs to run at any time and not be limited
to dedicated resource blocks and time frames. The ’integrated’ approach of al-
lowing the local scheduler to determine when and which resources are available
for metajobs, allows the local scheduler opportunities to fully enforce local poli-
cies and to fully optimize scheduling and resource allocation. This results both
in more local control over local resources and also better utilization of these re-
sources. These advantages make it likely that a reservation based metascheduling
system will become the standard in the future. The architecture outlined in this
paper promises to minimize the negative impact of a metascheduled workload.
However, due to past experience, there is still resistance to any metascheduling
system at many sites. This paper focused on the performance impacts on local
workload of the reservation based metascheduler. This impact was quantified
across a range of loads and demonstrated to be much lower than that found
under a blocked resource metascheduler. This information will allow local man-
agement and administrators to make informed decisions regarding whether or
not the benefits of the metascheduling system justifies the cost. The research here
also yields the information needed for intelligent setting of metajob throttling
policies which would bring this impact to a tolerable level.

The Grid Forum[13] has recently been formed to examine issues related to
establishing a nationwide computational power grid. This group is attempting
to create an architecture that will allow users to submit jobs to the grid without
needing to know the exact location where their jobs will run. Advance reserva-
tions are an important component of the overall grid system. The infrastructure
created for this research will enable investigators to answer questions about sev-
eral design decisions that must be made in creating the grid. This paper indicates
how varying metascheduled workloads affect the quality of service delivered to
local jobs thus allowing scheduler administrators and management to determine
acceptable impacts and set appropriate policies to throttle such external work-
load.

Future research will compare stateless reservation creation vs. courtesy reser-
vations. Additional research will also be conducted in the area of ’Optimal’ job
scheduling and in ways of utilizing current performance information in deciding
optimal metajob fragmentation and resource allocation. Answering these ques-

tions in a quantitative way is important as a step towards validating the feasi-
bility of a wide-spread metascheduling environment. Such research is vital in the
effort to persuade local system administrators to make their systems available
for use by metajobs and demonstrate that an advance reservation metasched-
uler will increase the utility and availability of computational resources in the
supercomputing and cluster community.

References

1.

10.

11.

12.

13.

P. Chandra et. al. Darwin: Resource management for value-added customizable
network service. In Sizth IEEE International Conference on Network Protocols,
1998.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A resource management architecture for metacomputing systems. In
The 4th Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
IJSA, 11(2):115-128, 1997.

Andrew S. Grimshaw and William A. Wulf. The legion vision of a worldwide
virtual computer. Communications of the ACM, 40(1), 1997.

I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A dis-
tributed resource management architecture that supports advance reservations and
co-allocation. In International Workshop on Quality of Service, 1999.

Maui High Performance Computing Center. The maui scheduler. In
http://www.mhpcc.edu/maui/, 1999.

Mark Clement, Quinn Snell, David Jackson, and David Ashton. High performance
scheduling for windows nt. In Proceedings of the 1999 International Conference on
Parallel and Distributed Techniques and Applications, pages 525-531, 1999.

Larry Smarr and Charles E. Catlett. Metacomputing. Communications of the
ACM, 35:45-52, June 1992.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc.,
1996.

Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts.
Addison-Wesley, 1998.

R. Metcalf and D. Boggs. Ethernet: Distributed packet switching for local computer
networks. Communications of the ACM, 19(7):395-403, 1976.

M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the
Theory of NP-completeness. W.H. Freeman, 1979.

The Grid Forum. The grid forum. In hitp://www.gridforum.org/, 1999.

