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Abstract

Load balancing in large parallel systems with distributed memory
is a difficult task often influencing the overall efficiency of applications
substantially. A number of efficient distributed load balancing strategies
have been developed in the recent years. Although they are currently
not generally available as part of parallel operating systems, it is often
not difficult to integrate them into applications.

In this paper we use the notion of graph embedding to develop a gen-
eral description for different kinds of load balancing problems. Based on
the characteristics of the application and the parallel system we classify
the problems into five groups. For the case of applications from the field
of scientific computing, useful methods are described in more detail.

If an application is static, the load balancing problem reduces to
the task of mapping the application graph onto the processor network.
For modern parallel architectures, this problem can further be relaxed
to graph partitioning. We give a survey of the most important graph
partitioning heuristics.

If the application is dynamic, e.g. adaptively refining meshes in fi-
nite element calculations, a number of different dynamic load balancing
strategies can be used to handle the varying utilization of processors. We
describe several methods based on a two-step approach: 1.) Considering
how much load to move in which direction and 2.) which load to move.



1 Introduction

The use of parallel processing is established in nearly all areas of science and technol-
ogy. Small symmetric multiprocessor systems (SMPs) can be found within many of the
powerful modern workstations. Medium-sized machines with (virtually) shared memory
are becoming more and more common. While the techniques for parallelizing application
algorithms are generally available, most of them fail if scalable codes for large, massively
parallel systems have to be designed. The principle of globally shared memory is physically
not scalable to more than a small number of processors. Larger systems typically consist of
processors with own local memory, i.e. they implement distributed memory. Data exchange
in these machines use message passing via a communication network.

The problem of load balancing becomes much more difficult in large distributed systems.
Algorithms have to minimize both load imbalance and communication overhead of the
application. Additionally, they should be efficient themselves (i.e. they should balance the
load with as little overhead as possible) and they should be scalable.

For a number of different applications, efficient distributed load balancing strategies
have been developed in the recent years [53]. Although they are currently not generally
available, at least not as part of parallel operating systems, it is often not difficult to
integrate them into applications [51, 86]. However, the algorithms to be used for load
balancing still depend heavily on the characteristics of the application.

Aim of this paper is to give a survey and classification of different load balancing
scenarios based on application characteristics and communication capabilities of parallel
systems. Especially for the case of applications from the field of scientific computing, useful
methods for both, static and dynamic load balancing are described in more detail.

In Section 2 we discuss different models of parallel systems. Using the Distributed Mem-
ory Model (DMM), load balancing can be expressed as graph embedding problem. Based
on this modeling, we classify different load balancing scenarios into static and dynamic
problems. The dynamic ones are split again into four groups according to the communica-
tion features of the parallel system and the characteristics of the application. Properties
and possible balancing methods for three of the four dynamic classes are discussed briefly.

If the application is static, the task of load balancing reduces to a mapping problem
which can be further relaxed to a graph partitioning problem. In Section 3 we give a survey
of the most important graph partitioning heuristics. We describe the algorithms in detail
and compare results of several partitioning libraries implementing different heuristics.

Section 4 deals with load balancing for dynamic applications from the field of scientific
computing such as adaptive finite element simulations, which refers to the fourth dynamic
class distinguished in Section 2. Problems and possible solutions are discussed in detail.
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Figure 1: Variants of the DMM. Figure 2: The LogP-Model.

2 Load Balancing: A Classification

2.1 Modeling Architectures and Applications

To be able to classify load balancing problems, one has to define models describing the
application and the architecture of the target machine. The exchange of data in parallel
systems with distributed memory is usually performed by communication via a routing
network. Therefore, for the rest of the paper we will consider only message-passing based
systems. Such architectures consist of a number of processors with local memory and a
communication network. Concepts like virtually shared memory or global address spaces
which appear in some of the most recent commercial systems are usually implemented by
message passing, to0o.

Figure 1 shows different variants of communication networks. They can, for example, be
bus networks like in the Intel Paragon machines, multi-stage networks like in the Thinking
Machines CM5, the Parsytec CC, the Meiko CS2, or the IBM SP, or direct networks like
in the older T800-based transputer systems, the NCube machines, or the Cray T3D/E.

Several models describing parallel systems and parallel applications have been designed
in the past [54]. The most popular certainly are the LogP- and the BSP-model [14, 57, 78].
The models differ in the way how processors and communication networks are described.
Most of them abstract from the structure of the routing network. Unfortunately, the
communication structure of the application and the communication capabilities of the
network are important factors for the design of load balancing algorithms and can not be
neglected.

The LogP-model [14] describes a parallel system with help of four parameters (Fig. 2).
P is the number of processors, the other three (latency, overhead and gap) describe the
communication capabilities: L is the communication latency, i.e., the time the network
needs to transmit a message of unit size. The network needs additional o(verhead) cycles



to set up a communication and g(ap) cycles have to pass between two consecutive messages
in order to avoid an overloading of the network (because in this case the latency would
increase and L would not be a valid parameter any more [58]).

The BSP-model [78] is rather a programming model and requires the parallel system to
provide asynchronous communications and to be able to operate in lock-steps. The model
distinguishes between calculation and communication phases. Communications can be set
up during a calculation phase. A following barrier-synchronization between all processors
ensures that all messages are delivered afterwards. Many applications can be modeled in
this lock-step fashion and for analyses, the number of phases are counted. Extensions of
this model include more detailed parameters of the communication behavior of the parallel
system [3].

The Distributed Memory Model (DMM) [47, 57] is suited best to describe the topological
structure of a parallel system (cf. Fig. 1). It describes the machine by a graph where nodes
stand for processors and edges denote possible connections.

In the following, we view a parallel system with P processors as a graph H = (U, F)
with nodes U = {0,..., P —1} and edges FF C U x U. We consider only homogeneous sys-
tems, thus we omit node and edge weights which would be needed to model heterogeneous
machines.

A parallel application is modeled as graph G = (V| E, p, o) with nodes V' ={0,..., N —
1}, edges E C V x V, node weights p : V—IR and edge weights o : E—IR. The meaning
of nodes and edges can differ from application to application. For example, nodes can
describe processes or data items, edges can stand for data dependencies or communication
demands.

2.2 Classification

Using the modeling of Section 2.1, load balancing can be viewed as a graph embedding
problem. The task is to find a mapping 7 : G—H of the application graph to the processor
graph minimizing certain cost criteria. Depending on the application, the graph G' can be
static or dynamic, i.e., the computational load of the application nodes may or may not
change during run-time. The processor graph is usually considered to be static.

Static applications have to be mapped only once onto the processor network and do not
change during run-time. Thus, the load balancing problem can be reduced to a classical
mapping problem where one graph has to be embedded into another. Most applications
from the area of scientific computing behave static in this context. Examples are all kinds
of non-adaptive FEM-simulations [17]. Section 3 considers the case of static load balancing
and presents some of the most efficient solution methods.

Dynamic load balancing problems occur if the application graph changes during run-
time. The graph may grow or shrink, i.e. nodes and edges might be inserted or deleted, or
the node and edge weights may vary. Load balancing problems can be classified according to
the weight functions of the application graph. Especially the granularity of an application
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Figure 3: Classification of dynamic load balancing problems.

is of importance for the choice of the right balancing algorithm. Fine-granular applications
consist of a large number of light-weighted nodes representing small processes or data
items. Coarse-granular tasks are those with a small number of heavy processes.

The distinction often determines whether an application node can be migrated or not.
Heavy processes are usually difficult to move from one processor to another during run-time,
while data items can be transferred without problems. Accordingly, we classify dynamic
load balancing problems depending on the communication structure of the application
and on the possibility to migrate processes. Figure 3 shows the subdivision of balancing
problems into four classes. In the following, we briefly describe applications, balancing
algorithms, and theoretical results for each of the left- and top-most three classes. Dynamic
applications from scientific computing usually cause load balancing problems belonging to
the class of Re-Embedding. This class will be considered in Section 4.

2.3 The Dynamic Mapping Problem

The Dynamic Mapping Problem usually appears in the context of client-server applica-
tions. During run-time, processes are generated dynamically and have to be placed onto
processors. There are almost no dependencies between them (thus, only little communi-
cation), but they also can not be migrated. Once placed, a process has to stay on “its”
processor until termination. Load balancing algorithms have to take into account the
trade-off between increasing overhead (e.g. to gather information about the system state)
and increasing balancing quality [16].

Many theoretical results could be found on this kind of problems in the recent years.
The mapping problem can be modeled as a “balls-in-bins” game where a number of balls
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(processes) have to be placed into a number of bins (processors) (Fig. 4). For theory, it
is (up to now) assumed that the balls are given in advance, placed by a centralized or
distributed algorithm (the dispatcher), and that no load is consumed. It is known that if n
balls are placed into n bins at random, then the fullest bin receives 0(101010" ) balls (with
high probability (whp.) for n—oo [2]). Azaret.al. could show that if for each placement,
k > 2 bins are asked for their load and the ball is placed into the lightest, then, whp.
and for n— o0, the fullest bin contains only %golgoi—" + O(1) balls (which is an exponential
increase in balancing quality) [2]. Extensions of the results to a parallel placement of balls
are known [1], as well as optimal parallel algorithms for the placements of weighted balls [7].
Decker et. al. introduce additional costs for asking processors for their load and give best
values for k£ depending on the number n of jobs and the communication capabilities of the

parallel system [16].

2.4 The Dynamic Embedding Problem

If there are strong communication dependencies between the processes and they addition-
ally can not be moved, the placement problem becomes quite difficult. This so called
Dynamic Embedding problem occurs in dynamic tree-search applications like configuration
systems, game tree search [59], or backtrack search [67]. The currently available balancing
strategies place dynamically generated jobs onto processors in the neighborhood of their
origin. Analytical results concerning load and dilation for balancing dynamic tree-like
applications on “hypercubic” networks are known [36, 48, 61, 67]. First heuristics for grid-
like applications appear, too [6] (which is then, of course, of relevance for certain scientific
computing applications). But it turns out to be much more difficult to obtain analytical
results if the application graph G is not as sparse as a tree.
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2.5 The Dynamic Load Balancing Problem

The Dynamic Load Balancing Problem is the classical load balancing problem. For applica-
tions where migratable jobs without communication dependencies are generated dynami-
cally, a large number of efficient load balancing algorithms are known [9, 50, 51, 53, 77, 89].
A survey and classification concerning the type of information used to decide which load
to move and the set of processors allowed to migrate to is given in [53].

Lin and Keller designed a gradient model for this balancing problem [50]. They assign
a status of high, medium, or low to processors depending on their load. The algorithm
then tries to push load from high to low. Ramme extended this model by additionally
pulling load into the direction of “low” processors [53]. In Liiling’s algorithm, processors
balance their load with a fixed set of neighbors if the load difference between them increases
above a certain threshold [51]. By adjusting the threshold to the migration frequency,
thrashing effects could be avoided (cf. Fig. 5). For parallel branch & bound applications,
the algorithms showed speedups of over 900 on 1024 processors (cf. Fig. 6 and [51]).

First theoretical results for a fully dynamic load balancing algorithm were given in [71].
The authors showed that if processor ¢ initiates a balancing action with a randomly chosen
other processor with probability chﬂ then the expected load of 7 is at most ¢ times the
average load (plus a constant).

Liiling used a model where a processor balances with d (randomly chosen) others, if its
load changes by a certain factor of f [52]. He could show that the expected amounts of
load of arbitrary pairs of processors differ by not more than a factor which depends on f
and d only.
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3 The Static Problem

3.1 Mapping

This section deals with the static load balancing problem, i.e. neither the structure nor the
weights of the application graph G change during run-time. We assume that G is completely
known prior to the start of the application. Examples of this kind of applications occur in
different fields, e.g. none-adaptive methods for numerical simulations.

The static load balancing problem is to calculate a good mapping of the application
graph G = (V, E) onto the processor graph H = (U,F). In a formal description, a
mapping is a function 7 : V—U which assigns each node of G to a node of H. Let
d : E=P(F) be a routing function which assigns each edge e = {u,v} € E to a path
we = (e1 ={m(u),q1},e2 = {q1, 2}, .., i = {qi_1,7(v)}) with |w,| = i.

Cost criteria determining the quality of a mapping are its load, dilation, and congestion
(cf. Fig. 7 and [47, 57, 59, 60, 70]). The load of a mapping 7 is the maximum number of
nodes from G assigned to any single node of H. Formally:

load(r) =max > p(v). (1)

peU veV,m(v)=p
The dilation is the maximum distance of any route of a single edge from G in H:

dil(m) = . 2

i(r) = _max | 2)

The congestion is the maximum number of edges from G that have to be routed via any
single edge in H:

cong(m) = max > ole). (3)

e={p.a}cF e={u,v}€E
E€we
The load determines the balancing quality of the mapping. It should be kept as low as
possible to avoid idle times of the processors (nodes of H). For the edge-measures dilation
and congestion, we assume that every edge of G is used for the same amount of messages.
Then, the dilation of an edge of G determines the slow-down of a communication on this
edge due to routing latency in H. Clearly, the maximum dilation should be kept small,

as in a synchronized model it is responsible for the length of a communication phase (if

9
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Figure 8: Mapping of a 9 x 7 grid onto a 13 x 5 grid.

congestion is neglected). Congestion on edges of H also may slow down the communication.
If we assume the same data-throughput on each edge of H, and if a communication in G
sends just this amount of data in each step, then a congestion of ¢ on an edge of H will
mean that completing all the ¢ communications of GG routed over this single edge takes at
least ¢ times the time it would need if there was no congestion.

Altogether, the goal is to find a mapping function 7= which minimizes all three measures
- load, dilation, and congestion.

Some optimal mapping functions concerning load and dilation are known for well defined
pairs of graphs like Grids, Trees, Hypercubes, etc. [47, 60]. As a small example we show
in Figure 8 (following [69]) how to find a one-to-one embedding of a X b grids onto = X y
grids with x = [%”] The idea is to “push and pull” the a x b grid into the right shape.
More formally, the rows of the a x b grid are folded into the z x y grid. The prescription of
how to fold is given by an embedding matriz (right in Fig. 8) containing y columns and a
rows. Row ¢ describes how to fold row ¢ of the a x b grid. The contents of row ¢ in column
j of the matrix give the number of nodes from row ¢ of the a x b grid to place in column
j of the x x y grid. A number £ > 1 in an odd column means to place the k£ nodes from
“top-to-bottom”; in an even column the placement is “bottom-to-top”. The first row of
the embedding matrix is given by

(B1 T = 1 [ = [ ]os [] = 52])

A row 7 can be obtained by a cyclic right shift of row ¢ — 1. It can be shown that the sum

of each row equals b and the sum of each column of the matrix equals [%”1 or L%”J The

maximum dilation of this embedding is [5] + 1 [69].

This is only a small example for embedding grids into grids of a certain type. For special
cases of ratios between (a,b) and (z,y), other methods are known which give similar or,
sometimes, better results [69]. And, of course, many other results for mapping different

10



well defined graphs onto each other are known. For a survey, the book of Leighton [47]
and the paper by Monien and Sudborough [60] may be used. Several of the methods are
calculable in parallel and are implemented in libraries like for example described in [70].

If G or H do not belong to these well defined classes of graphs, heuristic methods
have to be used to find a good mapping function. The general mapping problem is NP-
complete [19], even if only load and dilation are considered as cost function. This means
that all currently known solution algorithms need a run-time which grows exponentially
with the size of the guest graph GG, and, additionally, it is very unlikely that fast algorithms
exist [29, 49]. Thus, optimal solutions for the general mapping problem can only be
determined for very small graphs.

Meta-heuristics like Simulated Annealing, Genetic Algorithms or Tabu Search can be
applied to the mapping problem [19, 20]. Such heuristics try to minimize a cost function
consisting of a combination of load, dilation, and congestion. They are usually quite slow
and their efficiency in terms of run-time and solution quality heavily depends on the way
how the problem is coded and how a couple of parameters are adjusted [49].

The self-organizing feature mapping of Kohonen has been used for the graph-mapping
problem by Heiff and Dormanns [32]. This iterative method is quite well suited for the
mapping problem, although it is not able to guarantee balanced load.

Summarizing, we see that the task of mapping graphs onto graphs is solved for many
special cases, but the general problem is (currently) impossible to solve to optimality. Even
heuristics approximating the optimal solution are not efficient. Fortunately, recent devel-
opments in interconnection technology of parallel systems allow a careful relaxation from
the strict definition of the mapping problem. Current parallel machines (often) contain
communication networks consisting of routing switches which implement very efficient pro-
tocols like Worm-hole- or Cut-Through Routing [26, 68]. With these networks the definition
of dilation is not longer valid and thus it is possible to relax from the topological structure
of the host graph H [58]. It can in principle be viewed as a clique, a completely connected
graph, leaving congestion as the only determining communication cost value of a mapping.
Unfortunately, this is not completely true, as a processor is not able to communicate with
an arbitrary number of others in one step. Thus, the number of messages, which a proces-
sor has to send, has to be considered, too. The next section shows the implications on the
mapping problem.

3.2 Mapping in the LogP-Model

Multiprocessor systems with indirect routing networks like the Cray T3D/E, IBM SP,
Parsytec GC/CC, and even the HP/Convex SPP and the SGI Origin can be modeled
as clique graphs, i.e. (in the notation of Sec. 2.1) for all p,q € U it is e = {p,q} € F.
Due to the very efficient networks and routing algorithms, there is no real “neighboring”-
relation between processors any more. Communication between any two pairs is possible
at nearly the same speed. Thus, the topological structure expressed by the DMM is no

11
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Figure 9: Overhead-Latency trade-off in the LogP-model leads to different mappings.

longer relevant. Instead, the number and size of messages a processor has to send can be
considered. The size of messages is a measure to express congestion. As all messages on
one edge of H go to the same target (there is no routing via nodes of H), they can be
combined.

The LogP-model with its parameters L, o, and ¢ is suited to analyze algorithms under
such conditions. Sending a message of size m takes time m - L 4+ o (if we assume that a
processor sends a message every ¢ steps at most, cf. Sec. 2.1). If a mapping of nodes from
G to nodes form H has to be found, the trade-off between o and L has to be considered.
Optimizing for o would mean to send as few messages as possible, considering L means to
send as small messages as possible. Figure 9 shows this trade-off using the mapping of a
16 x 16 grid onto 16 processors. If the latency L is large, the size of messages should be
kept small. Thus, the congestion of the mapping has to be considered (which is 4 in the
leftmost mapping). If, on the other hand, the overhead o is large, a processor should set up
as few communications as possible. Thus, the maximum degree of the remaining quotient
graph of the mapping (which would be a 4 x 4 grid in the left mapping of Figure 9 and a
1 x 16 grid in the right) has to be small.

The mapping problem restricted to the LogP-model turns out to be some kind of a
partitioning problem: The guest graph G has to be split into a number of parts such
that the degree of the resulting quotient graph and the maximum number of edges of G
running between any pair of partitions are small. We may further relax the problem to the
classical partitioning problem [49] by ignoring the parameters L and o of the LogP-model
and by just requiring to have as many edges of G internal as possible. Using the notation
of Sec. 2.1, the partitioning problem can be formulated as follows: The graph G has to be
partitioned into |U| equally sized parts Vi, Vi, ...Vjy—1 such that only very few edges are
external. Instead of the congestion (3), the cut of the partition has to be considered:

cut(r) = > Yo oale) = > ole) (4)

é={p,q}€F e={u,v}€EFE e={u,v}€EFE
ECwe w(u)#mw(v)

The partitioning problem is NP-complete (even for the case of |U| = 2, [29]), but there

12



exist a large number of efficient heuristic methods which minimize the load as defined in
(1) as well as the cut according to (4). The following section introduces the most relevant
existing partitioning heuristics.

T TT
2 Tt
V]_ Vl 3 Vl
Global V0 Local vV, Local Local
Heuristic Heuristic 0, Heuristic Vo Heuristic
— — — —_— .,

cut: 9 cut: 7

Figure 10: Global and local bisection heuristics.

3.3 Graph Partitioning

The graph partitioning problem as defined in (4) is to split a graph into as many parts as
there are numbers of processors such that as few as possible edges are external. This so
called k-partitioning problem is still hard to solve directly but can be done by recursively
bisecting the graph into two pieces. For the bisection problem, many efficient solution
heuristics exist which do not solve it to optimality (as it is still NP-hard), but approximate
the best value. The methods differ in their solution quality in terms of numbers of external
edges (the cut, (4)), in the time they need, and, sometimes, in the additional information
they require.

Bisection heuristics are usually divided into global and [ocal methods (cf. Fig. 10 and [22,
33]). Global methods are sometimes called construction heuristics, because they take the
graph description as input and generate a partition. Local methods are called improvement
heuristics. They take the graph and a partition as input and try to improve the cut by
local re-arrangements of nodes. We will describe existing local and global methods in the
next two sections.

3.3.1 Global Methods

Global bisection methods have to construct a valid bisection of a graph, i.e. they have to
generate a partition of the nodes into two subsets of equal size. The currently available
methods use different amounts of information on the graph. They range from very simple
methods which just use node numberings to very sophisticated heuristics using information
on the topological structure of the graph. Accordingly, their time and space requirements
differ as well as the quality of solutions they generate.

Very simple methods just use the numbering of nodes of the graph to split it into two
parts. They generate partitions of nodes with odd (even) indices, or with indices smaller
(larger) than half the number of nodes. Such methods are very fast, but the quality of

13



Figure 11: Co-ordinate, Inertial, and Greedy Bisection.

solutions they create depends heavily on the numbering of nodes and thus on the way
the graph is generated [66]. Usually, these methods are pre-steps to sophisticated local
improvements heuristics.

If the graph is a mesh, i.e. if it is embedded into the Euclidean space and geometric
co-ordinates are attached to its nodes, then this extra information can be used to generate
slightly better partitions. Simple co-ordinate bisection methods sort the nodes according
to their x-, y-, and z-co-ordinates and then split the graph in the x-, y-, or z-direction
depending on its elongation in either of the three directions. Figure 11 shows a simplified
example for the 2D case. The method can be applied recursively in a balanced or unbal-
anced way [41, 42] to cut into more than two parts, and it is also possible to directly split
into a number of partitions [21].

A slightly more elaborated method first rotates the co-ordinate system according to the
main principle axis of the graph before using co-ordinate bisection (Fig. 11). The Inertial
bisection heuristic calculates the center of gravity of the graph as the (weighted) mean of
all the node co-ordinates. Using the Euclidean (or Ly) norm, it then measures the distance
of all nodes from the center point. The accumulated distances in x-, y-, and z-directions,
and all possible pairwise combinations of z, y, and 2z are put together to form a 3 x 3
matrix. The main eigenvector of this matrix determines the principle axis of the graph. It
is then partitioned orthogonal to this axis [33, 84].

A different class of methods does not use geometric information of the graph but the
connectivity instead (Fig. 11). The so-called greedy methods build up a bisection starting
from one node (as Vp) by repeatedly adding the node which increases the cut size least [65].
Farhat uses an extension of this algorithm to partition into k pieces directly [24, 25]. Other
versions determine several of the starting nodes first and build up each part in parallel [73].

A widely used global partitioning heuristic is the Spectral Method which is based on
algebraic graph theory [4, 64, 84]. To get an idea of how this method works, we have to
re-write the bisection problem in a matrix notation. Let A be the adjacency matriz of the
graph G, i.e. A = (ay,) with ay, =1 & (u,v) € E and a,, = 0 otherwise. Let D be a
diagonal matrix with d,, = deg,, i.e. D contains G'’s node degrees. The matrix L = D — A

14



is called the laplacian matriz of G. A bisection 7 can be written as vector x with =, = +1
where Vy = {v;z, = —1}. If z is a bisection (w.l.o.g. assume |V| even), then > x, = 0.
The cut size from (4) can be re-written to

cut(z) =

Z (T — xv)2 . (5)
{u}€E

A~ =

It is an easy exercise to see that (5) is equivalent to cut(z) = +'Lz. The bisection problem
1

is then to find a vector x minimizing cut(x) = j2*La such that >z, = 0 and =, = *1.
This discrete problem is of course difficult to solve (as bisection is NP-hard), but we can
do a relaxation of the condition z, = +1 to x, € IR with z'x = n (= |V]). Let Z be
the relaxed bisection vector. I is an approximation to the real bisection vector x. The
bisection can be obtained from 7 in different ways. It is for example possible to sort the
entries in £ and to take the first half as Vj and the second half as V;. The problem which
remains to be solved is to find a good x. The Spectral method reduces this task to an

Eigenvalue problem.

Let Ay < Xy < ... < A\, be the eigenvalues of L and w,,...,u, be the correspond-
ing normalized eigenvectors (as u, is of special interest here, we will use y := w, in the
following). It is known that A\; = 0, Ay > Ay (if G is connected), and A, < 2 - deg, .-
The eigenvectors of L form a basis of the IR", so we can express & as Y. a;u; with some
a; € IR,Y. o? = n. Some easy calculations then show that

Lats = a2+ 4 a2a) > Ha2t . a2, = 2 (6)
4 4 4 4
which is a lower bound on the minimal number of edges which have to be cut by any
bisection. Using & = /n - y gives equality in (6) which shows that splitting according to
y is the best possible solution of the approximation problem. A projection to the discrete
case can be done as described above.

The second smallest eigenvector y expresses the algebraic connectivity of the graph and
is sometimes called Fiedler-vector [27, 64]. Fiedler showed in '73 that if G is connected
and r is any real number, then the sub-graph V4 = {v;y > —r} is connected [27]. This
gives some intuitive hint on why the approximation of x by y might not be too bad and,
additionally, enables a recursive application of the method to split into more than two
parts.

The Spectral method as originally described in [64] determines y to L and splits the
graph according to the entries in the vector. The results are usually fairly good, especially
globally seen. Due to the projection to the discrete case, local improvements are often
possible.

Determining the eigenvectors of L is an expensive task which limits the usability of
the method. Therefore, in implementations of libraries like Chaco [33], efficient incomplete
orthogonalizations are used or multi-level solvers as described in [4]. Additionally, certain
attempts are made to use more eigenvectors to directly split into four or eight parts [35].
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3.3.2 Local Methods

Although some of the global partitioning methods usually produce good cuts, there is
often a large potential for further improvements by local rearrangements. Local heuristics
determine equally sized sets of nodes which can be exchanged between parts such that
the size of the cut decreases (cf. Fig. 10). The methods differ in the way how these sets
are found. Simplest local search just tries to exchange pairs of nodes until no further
improvement is possible [49]. This method is quite fast but the possible improvements
are limited due to the existence of local minima, i.e. partitions where all possible swaps of
nodes would increase the cut. The example in Figure 12 shows such a situation.

The Kernighan-Lin heuristic [45] (or, shortly, the KL-algorithm) uses the same basic
operation - swap of node pairs - but it allows intermediate increases of the cut size, thus
avoiding certain local minima. Figure 12 shows an example of how the KL-algorithm
works. Let C' be the cut size and b(u, v) the benefit of exchanging u and v, i.e. the decrease
in cut size if « and v are swapped. Note that b(u,v) does not have to be positive. The
KL-algorithm chooses in each swap the pair of nodes with the largest benefit (which might
be < 0), exchanges them logically and locks them. These swaps are repeated Z-times until
all nodes are locked. Afterwards, the algorithm starts from the beginning searching for
the sequence of logical swaps with the largest accumulated benefit, i.e. the lowest cut size.
This sequence of swaps is then performed physically. This “super-step” of searching for a
good sequence of swaps is repeated until no further improvement is achieved.

The original KL-algorithm as described above (and in [45]) is quite slow. The time
needed for one “super-step” on a graph with n nodes is O(n?) (2 times searching for the
pair with maximum benefit). Fiduccia and Mattheyses in ’82 described an improvement
to O(n?) per “super-step” (O(n) on sparse graphs) by not searching for pairs of nodes with
maximum benefit but just taking single nodes on each side [28]. For real implementations
a lot of extra “tricks” like randomization and early termination of “super-steps” improve
the run-time and solution quality substantially [33, 34, 65].

An alternative local improvement method is the Helpful-Sets heuristic [22, 56]. It
proceeds in a two step manner. The first step tries to find a set of nodes in one part and
moves it to the other in order to decrease the size of the cut while neglecting the load. The
second step tries to re-balance the load while keeping the size of the cut below the initial
value. Figure 14 shows the main idea of the algorithm. The basic operation is no longer a
swap of nodes but a move of certain subsets. The subsets have to be helpful [38]. We will
describe in the following what this means.

For each node v of a graph G with partition 7 define ext(v) = [{u;{u,v} € E,7(u) #
7(v)}| as the number of external edges incident to v. Consequently, int(v) is its number of
internal edges and it holds deg(v) = int(v) + ext(v). Then, h(v) = ext(v) — int(v) is called
the helpfulness of node v and v is called h(v)-helpful. The helpfulness of a node is equal
to the change in cut size if this node is moved to the other subset. The nodes in Figure 13
are marked with their helpfulness.

Furthermore, let S C V;,i € {0,1} be a subset of nodes from one side of the cut. We
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Figure 12: The KL-algorithm.

define int(S) = Yyes {{u,v} € E;u € V; Au ¢ S}| to be the number of internal edges
of S, i.e. edges which lead out of S but to nodes on the same side of the cut. Similarly,
ext(S) = X es [{{u,v} € E;u ¢ V;}| is the number of external edges of S, i.e. the number
of edges out of S crossing the cut. Then, h(S) = ext(S) — int(S) is the helpfulness of set S
and S is called h(S)-helpful. If S is moved completely from V; to Vj}, the cut size decreases
by h(S) edges. Figure 13 shows a number of 2-helpful sets. The examples indicate the
strength of the method: nodes which never would be moved by their own might contribute
to a helpful set and therefore can be moved together with others.

Another strength of the method comes from theory. Using the definition of helpfulness,
it is possible to show an upper bound on the bisection width of 2k-regular graphs (i.e. it is
possible to show how many of the edges of a given graph have to be cut at most in order
to construct a bisection) [56]. The proof of this bound consists of two steps. It shows that
if there is a bisection and if its cut size is not too small, then there exists a small 4-helpful
set in either V; or V4. This 4-helpful set can be moved to the other side and decreases
the cut size by 4. The second step shows that if the imbalance is not too large and if the
cut size of such an unbalanced partition is not too small, then it is possible to balance the
partition by moving enough nodes from the larger to the smaller part without increasing
the cut size by more than 2 edges altogether. Both steps can be applied iteratively until
the “too small” condition on the number of external edges is no longer fulfilled. The bound
which can be proven by this method states that for any n-node 2k-regular graph (a graph
with n nodes where each node has degree 2k), at most %n + 1 edges have to be cut by a
bisection. The formal proof of this theorem is given in [56].

The HS-heuristic implements this proof technique [22, 56]. Figure 14 shows the prin-
ciple. The heuristic searches for a small helpful set S on both sides of the cut. If such a
set is found, it is moved to the other side. The algorithm then searches for a balancing
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Figure 13: Some 2-helpful sets. Figure 14: The HS-algorithm.

set S on the larger of the two sides. S has to have the same size as S but has to be at
least (—h(S) + 1)-helpful. Both steps together construct a new bisection whose cut size
has been decreased by at least one edge.

The HS-heuristic is included in the PARTY partitioning library [65, 66]. The time
needed for one iteration is O(n) on sparse graphs. Several tricks of the implementation, such
as searching for c-helpful sets with a number ¢ > 4 increase its speed of convergence [22].
It behaves comparable to the fastest implementations of the KL-algorithm in both time

and quality of solutions. On some examples, the KL is slightly better or faster, on others
HS is preferable [56, 66].

3.3.3 Multilevel Hybrid Methods

If very large graphs have to be partitioned, coarsening techniques can reduce the time-
requirements [4, 33, 43, 82]. The idea is to shrink a large graph to a smaller one with
similar characteristics, partition it efficiently and extrapolate the partition to the original
graph.

Figure 15 shows an example. There are many different possibilities for coarsening [43].
The example in the figure uses what is called heavy edge matching. It determines an
independent set of edges, i.e. edges which are not “neighbored” and contracts them to a
single node. Some of the remaining edges then fall onto each other. Edge weights can be
used to express this multiplicity. While choosing edges for a matching, preference is given
to heavy weighted edges.

Other possibilities are coarsenings by graph partitioning. Fast and simple partitioning
heuristics can be used to split the graph into many small parts. Each part then forms a
node of the next coarsening level.

The smallest graph can be partitioned using any of the presented global methods.
Usually, Spectral Partitioning is used as it comprises the most global information of the
graph [33, 43]. The coarsening steps preserve the main topological structure of the graph
such that a global partition of the coarsest one is a good approximation to a global partition
of the finest.
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Figure 15: The multilevel algorithm.

The partitioning of the coarsest graph has to be able to deal with weighted nodes in
order to ensure load balance. The node weights are assigned during the coarsening process
and express the number of nodes of the finest graph represented by each node of the
coarsest. If the matching technique is used and if the matchings are not perfect in certain
steps (i.e. if not every node belongs to a matching edge), then the node weights differ from
each other.

The refinement steps invert the coarsening operations. Nodes of coarser levels are
expanded to edges or sub-graphs. If the coarse-graph partitioning did not consider the load
because it was not able to deal with weighted nodes, the refinement steps have to move
nodes across boundaries to balance the partition [44]. Additionally, a local heuristic like

KL can be (and usually is) used to “smooth” the partition boundaries in each refinement
step [34, 43].

Multilevel methods turn out to be the most powerful of the existing partitioning heuris-
tics. Their time requirements are almost independent of the graph size. As they collapse
the graph to a constant number of nodes and as the graph size (nearly) halves from level
to level, their run-time is dominated by the time of the first coarsening step. On sparse
graphs, this usually is O(n).

Additionally, multilevel algorithms naturally include what is also advisable with all the
other methods: A combination of global and local heuristics. In comparisons they usually
produce solutions which are among the best of all methods. Section 3.3.4 shows some
results of different methods implemented in different libraries.

3.3.4 Comparisons and Results

Although there are some theoretical results on the performance of specific partitioning
heuristics, they are still very weak due to the broad range of possible application examples.
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Usually, each application constructs examples with some specific characteristics and it is left
to show that theoretical observations also hold true for implementations of the heuristics.
Some of the heuristics are already very complex and are getting even more complex when
implemented with additional generalizations. Therefore, there are many implementations
details which influence the behavior of the heuristics.

Several software libraries have been developed to serve solutions to the graph partition-
ing problem. Examples are Chaco [33], Jostle [83], Metis [43], Scotch [63], and Party [65].
Their goal is to provide efficient implementations and to offer a flexible and universal
graph partitioning interface to applications. Partitioning libraries contain several different
heuristics which can further be tuned by adjusting specific parameters. Their performance
steadily increased in the recent years, leading to the ability of constructing partitions with
low cut sizes of very large graphs with more than a million nodes in the measurement of
seconds. To reflect specific application constraints more precisely, they often include sev-
eral extensions and generalizations like, for example, handling of node- and edge-weighted
graphs, optimizing for certain processor topologies or considering different cost functions.

It is difficult to perform an objective comparison of the implemented heuristics, because
there are many test cases one may consider and the libraries are designed with different
applications in mind. We choose bisection as the atomic step for comparing partitioning
heuristics. We consider different graphs from different applications and sources as bench-
mark suite. And we compare only those libraries which aim at being partitioning tools
rather than mapping libraries. We take some of the key heuristics from the different tools
and compare cut sizes and run-times on our set of benchmark graphs.

It is desirable for partitioning heuristics to have a stable and efficient performance
when used for graphs of different character. Therefore, we choose graphs from flow sim-
ulation (airfoill, wave), structural mechanics (crack), aircraft crew scheduling (Ih, with
edge weights), sparse matrix factorization (mat03HBF) and theoretical computer science
(DEBR20).

We consider the Multilevel (ML) method from the Chaco library, which uses the spectral
method on the coarse graph and the Kernighan-Lin (KL) refinement on several intermediate
levels, and the Inertial (IN) method with and without additional KL. The Metis library
serves with the multilevel strategy pmetis. Additionally, the Party library offers the setting
all, which performs 5 or 6 different node numbering, greedy and, if possible, coordinate
methods and takes the best result. This setting can also be combined with the local
refinement method Helpful-Sets (HS), which is the default setting of Party. Please refer to
the User-Guides of the libraries for more details.

Table 1 shows some characteristics of the graphs and the partitioning results. For graph
[h, the total number of edges and the total number of edge weights are shown. The Inertial
method can only be used for graphs with geometric coordinates.

None of the settings outperforms all others. The Inertial method is very fast and the
cut sizes can significantly be decreased by applying the KL refinement. The multilevel
strategies ML and pmetis compute low cut sizes with low run times. They only lack for
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Chaco Metis Party

Graph V] |E| ML IN IN+KL | pmetis all  all+HS
airfoill 4253 12289 85 94 83 85 94 83
(0.08)  (0.00) (0.02) (0.04) (0.04) (0.15)

crack 10240 30380 211 377 218 196 243 208
0.16)  (0.01) (0.05) (0.14) (0.10) (0.44)

wave 156317 1059331 9542 9834 9660 9801 | 10361 9614
(3.64)  (0.19) (1.61) (3.50) (2.84) (11.93)

lh 1443 20148 36376 - — | 22579 | 13643 9897
487380 (0.33) =) -) (0.06) (0.06) (0.23)

mat03HBF 73752 1761718 9359 - - 9555 8869 8869
(1.80) =) ) (2.04) (3.45) (11.52)

DEBR20 1048576 2097149 || 100286 - — | 101674 | 172204 94272
(48.99) =) =) (988.39) (16.63) (577.97)

Table 1: Test graphs and cut sizes for partitioning into two parts. Numbers in brackets
indicate run times in seconds on a Sparc Ultra 2.

the graph [h with weighted edges. The settings of Party seem to be quite robust, due to
the performance of several different simple methods. Although their run times are usually
higher than for the other settings, the resulting cut sizes are among the lowest if used with
the local refinement HS, which, again, significantly reduces the cut sizes.

Overall, many different methods and implementations exist and the user may choose
a setting appropriate for his application. If the calculation has to be very fast, simple
methods like Inertial already produce partitions with reasonable cut sizes. But even for
very large graphs, multilevel strategies and local refinement methods are fast and result in
very low cut sizes. The combination of several methods of different character increases the
run time, but also results in low cut sizes and an overall robust behavior.

4 Dynamic Load Balancing

4.1 The Problem

A classification of dynamic load balancing problems was given in Section 2. Here we
will consider the Dynamic Re-Embedding Problem in more detail. The application graph
G = (V,E, p,0) of problems in this class is dynamic, i.e. nodes and edges are generated
or deleted during run-time. We assume that the applications operate in phases. Changes
of G do not occur at arbitrary, non-predictable times but in a more or less synchronized
manner. For algorithms in scientific computing, this is a realistic assumption. The mesh
is usually refined based on error estimates of the current solution [5, 11]. Therefore, the
calculation of the solution has to be finished before the error estimation and refinement
can be performed.

Figure 16 shows an example of a mesh adapted towards a corner singularity. Especially
if the singularity is moving, i.e. if in-stationary processes are supposed to be simulated, the
structure of the mesh changes rapidly throughout the whole calculation.
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Figure 16: A sequence of mesh adaptations.

The synchronized occurrence of load imbalances results in a kind of synchronized load
balancing problem at application determined times. The execution of the next calculation
step of the application has to wait until the load balancing is completed. In this way, we
know that during the process of balancing, no new load is generated and non is consumed.

One possible solution strategy for such types of synchronized balancing problems views
them as a series of static ones. The load balancing is performed by only one processor
using some of the partitioning heuristics we mentioned in Section 3 [75]. The scalability
problems if only one processor is doing the work can be avoided by parallelizing the parti-
tioning step [44, 62, 85]. Unfortunately, another difficulty imposes with this approach: The
balancing does not take advantage of the knowledge included in the existing distribution of
load over processors. Therefore, the new mapping often differs substantially from the cur-
rent one and a large amount of load (data) has to be shifted between processors. Although
there are heuristics minimizing the amount of load migration in this approach [62, 75], in
many cases still a large percentage of data has to move. Walshaw et. al. made experiments
comparing this kind of “re-partitioning” to dynamic load balancing algorithms which take
knowledge about the existing data-distribution into account [83]. In some cases, they were
able to reduce the amount of data-movement from over 80% to less than 10% for the same
balancing problem.

In the following, we focus on “dynamic re-mapping” algorithms which start from a
given distribution of data over processors and try to balance load while shifting as less
data-items as possible. Due to the data-dependencies between load-items (elements of FE-
meshes for example), it is not advisable to just place newly generated load onto arbitrary
processors to ensure load balance (like it is in the dynamic mapping problem). This would
impose heavy communication between nearly all pairs of processors after a short while. We
could, of course, consider H as being a complete graph where such a kind of placement is
possible (cf. Sec. 3.2). But as a migration of nodes from G should consider data locality,
i.e. nodes should not be moved to processors where none of their neighbors are located, we
have to reduce H to the quotient graph of G resulting from the mapping of G to H (i.e.,
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Figure 17: Mapping of graph crack to 128 processors (le) and resulting quotient graph (ri).

the structure of H now expresses the communication demands induced by the mapping,
cf. Fig. 17). If the load balancing is performed on this quotient graph only, data locality
can be guaranteed.

We can split the task of load balancing into two steps [85]. The first one calculates how
much load has to be shifted between processors, the second step determines which load has
to be moved [21].

4.2 “How Much”
4.2.1 Modeling as a Network Flow Problem

The first step of the load balancing, the “how much”, can be viewed as a flow problem. For
each edge of H one has to calculate how much load has to be transferred across it in order
to achieve a globally balanced system. Figure 18 shows a example for this construction.
Artificial source and sink nodes are added to the quotient graph. The source is connected

should =
~. avg. load

quotient graph auxiliary network

Figure 18: Modeling the Re-Embedding Problem as Network Flow Problem.
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to each “normal” node by edges of capacity according to their load before balancing. The
edges to the sink have capacity equal to the mean load value. Solving a network flow
problem on this auxiliary network gives the amount of data to shift between any pair of
neighbored processors in the quotient graph in order to achieve load balance.

Of course, we could use network flow algorithms to solve this problem. Unfortunately,
they usually apply to much more complicated cases of flow problems and are quite slow.
Furthermore, they are difficult to parallelize. For the case considered here an algorithm is
needed which is easy to parallelize, scalable to large numbers of processors, and local in
the sense that it does not need a global control and that processors operate with only a
limited number of others.

4.2.2 Token Distribution

In theoretical computer science the synchronized setting of the Re-embedding problem is
known as the Token Distribution Problem, where the task is to evenly distribute a number
of independent tokens on a network of processors. For this problem, a large number of
theoretical results as well as algorithms are known [55]. Counting the number of tokens sent
by such an algorithm via each edge immediately gives a solution to the question of “how
much”. The theoretical analysis of the token distribution algorithms counts synchronized
rounds of the network wherein only one token is allowed to traverse each edge per step.
Thus the results only give upper bounds on the time needed to determine the balancing
flow.

4.2.3 Random Matchings

Interestingly, relatively simple algorithms can already give optimal results, at least asymp-
totically. If, for example, in each step a random matching of H’s edges is chosen and some
load is sent via these edges if the loads of the corresponding processors are not balanced,
then it is shown that the load deviation halves in a (up to a constant) minimal number
of steps [30]. Unfortunately, such simple schemes are not really applicable in praxis. If
the algorithm is supposed to balance the load locally such that the difference between
neighboring processors is small, it needs an additional number of (y/n) steps.

4.2.4 Diffusion

Cybenko and Boillat were the first to suggest a simple distributed load balancing strategy
which they called diffusion based load balancing [10, 15]. In the diffusive load balancing
algorithm each processor balances its load with all its neighbors in each round. These
rounds are iterated until the load is completely balanced. Let w; be the load of processor
p € U in step ¢ and let oy, be a weighing factor on edge {p, ¢} (e.g. ap, = 1/deg,,,). Then
wzﬂ = w; - > Ozpq(w; — wz) (7)

¢, {p.g}eF
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which means that the amount of Il*! := aye(w), — w!) load items is sent via edge {p,q}
between step ¢ and t + 1. Equation (7) can be written in matrix-vector notation. Let
w' = (wy) be the load vector and let M = (ay,) with 0 < apy < 1, apy =0 V{p,q} & F and
app =1 — 3,4, pq be the diffusion matriz. Then (7) is equivalent to

w = Mw' . (8)

The fact that M is doubly stochastic can be used to show that under certain additional
conditions this iteration converges to an equally balanced load [15, 80]. The speed of
convergence depends on the spectrum of M, especially on its second largest eigenvalue +,
and is determined by the structure of the graph F' and the values of the «,,. For certain
graphs like hypercubes, tori or star graphs, optimal values of a,, are known [23]. It can
be shown that the standard diffusion algorithm as given in (8) reduces the load deviation

to € in O(%) steps [31].

The relatively slow convergence of (8) can be improved by over-relazation [80]. The
idea is to monitor the amount of load sent over the edges and to determine the number of
items to send in step ¢ not only depending on the current load difference but also on the
amount sent in the previous time step [31]. Iteration (8) changes to

w' = Mw’; wtt = BMuw' + (1 - pw" . (9)

This can be turned into a local instruction. With lf,q being the amount of load moved over
edge {p, ¢} towards step ¢, (9) gives:

o { (W), — w) if t=0

e (8= DI, + Bopg(wh —wk) if t>0.

(10)

It can be shown that the over-relaxed diffusion balances the load up to € in O(%) steps
-

. _ 2 . . .
if g = Yo where v is the second largest eigenvalue of M (according to amount) [31].

One of the main difficulties with the diffusion-type algorithms is the choice of good
values for o and . This implies not only a choice for a,, minimizing v. Additionally, v
has to be known in order to choose 3. For a given graph F' the best «,, values can be
determined using semi-definite programming (SDP) [23]. Unfortunately, SDP is very time-
and space-consuming. Currently, optimal M’s can only be determined for small graphs
with less than 100 nodes. But the task of finding good parameters can also be reduced to
an eigenvalue-problem of the corresponding Laplacian. The Laplacian matric L =D — A
has already been defined in Section 3.3.1. If a,, = « for all {p,q} € F and L is the
Laplacian matrix to H, then M = I —«- L. Thus, \;(M) =1 — a);(L) are the eigenvalues
of M and o = m minimizes y(M) [23]. Additionally, v and, hence, § are known.
The eigenvalues of L can be estimated using the degree of the graph and an approximation
of its edge-expansion. The latter can be determined using BFS starting from each node.
This heuristic choice of parameters performs well on a number of graphs, is parallelizable
and avoids the expensive calculation of eigenvalues of the graph [23].
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4.2.5 Dimension Exchange

In the diffusion algorithm, a processor balances its load with all its neighbors in each step.
If the processors are only allowed to communicate with one of their neighbors per step (i.e.
the balancing is sequentialized), the convergence can be sped up by introducing sub-steps
and using the information from the previous sub-step for balancing (instead of that from
the beginning of the time-step) [87]. This method is called Dimension Ezchange [15]. In
one step (or round, sometimes also called sweep [88]) of this algorithm a processor still
balances its load with all its neighbors but for the balancing over one edge (a sub-step) the
most-up-to-date information is used:

wht® = (1= Nwh 4+ Adwl  with A =1/deg, (11)
It can be easily seen that if H is a hypercube, one sweep with \ = % is sufficient [15]. For
certain other networks, optimal values of A\ are known [88, 89].

4.2.6 Multilevel and Variants

The diffusion and dimension exchange algorithms show similarities to simple iterative meth-
ods for solving linear equational systems. The diffusion is a variant of the Jacobi iteration
and dimension exchange may be viewed as a parallel version of Gauf3-Seidel. In linear alge-
bra, a number of other iterative methods for solving equational systems are known, many
of which are much more efficient than Jacobi or Gau-Seidel. If we restrict to the model
that a processor can only communicate with its neighbors and that no global knowledge is
to be used, then diffusion and dimension exchange seem to be the only possible iterative
methods which are applicable to the “Re-Embedding Problem” [31].

For practical applications such a restriction may not be valid, especially if the number
of processors is not too large. We already saw that H might be considered as being a
complete graph. Thus, communication between any pair of processors is possible. The
problem still remains to determine how much load to shift over which edge of the quotient
graph. But the processors may be allowed to communicate in a different way to calculate
a solution to the flow problem.

A number of authors have studied multi-level methods for the “Re-Embedding Prob-
lem” [37, 76, 81]. They divide the quotient graph H into halves, determine the amount
of load to shift across the cut and balance recursively in both halves [37, 81]. A variant
reducing the total amount of load to be shifted divides the processors according to their
current load, i.e. it applies a weighted partitioning of the quotient graph [76].

The co-ordination of balancing steps across a cut is a complex task. Nevertheless, the
algorithms show a good performance in applications.
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4.2.7 Minimal Flow

Hu and Blake formulate the local flow condition at nodes as an equational system [40]. For
a node p it has to be

Y. lyy=w,—w, (12)

a.{p.a}€F

i.e. the sum of in- and out-flow on its edges has to be equal to the difference between the
current and the desired load value. The system (12) is under-determined (if H contains
cycles) and, thus, has many solutions. Using Lagrange multipliers, Hu and Blake are able
to minimize the Euclidean norm of the flow [ over all edges. The system (12) turns into
L) = b where A is the vector of Lagrange multipliers and b is the right hand side of (12).
The new system can be solved for A using any equational solver. The flow values [,, on
edges {p, ¢} € F are then simply given by [,, = A, — A, [40].

Despite the fact that @ is needed for this method, different equational solvers might
increase the amount of global communication. Hu and Blake propose a CG algorithm
for the solution of LA = b which implies a large number of scalar products, i.e. global
sums. Nevertheless, on moderately sized systems the method seems to be fast and has the
additional advantage of minimizing the amount of load movement. It develops to become
the method of choice for load balancing in a number of applications [72, 83].

4.2.8 Information Dissemination

A drawback of many of the aforementioned methods is their relatively large run-time.
On grids for example, the iterative methods need O(P) steps in the worst case, if P is the
number of processors [40]. The multi-level methods determine a balancing flow in O(log P)
steps which is the best possible, but they are sometimes difficult to handle and their steps
are very complex.

Algorithms from the field of information dissemination, especially gossip algorithms [57]
may also be used to balance load. The gossip problem is such that each processor possesses
a piece of information and that an optimal communication schedule is to be found ensuring
that every processor knows the complete information afterwards. If this flow of information
takes place on disjoint paths, then the same paths may be used for a flow of data-items to
balance load.

Gossip problems in different communication modes are well studied in theoretical com-
puter science [39, 57, 59]. See [46] for a survey.

4.3 “Which”
4.3.1 The General Problem

For the problem of “which”, much less is known in literature. Here the task is to choose load
items which can be migrated in order to fulfill the flow requirements determined in the “how
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Figure 19: Aspect Ratio and approximation.

much”-step. The way such a choice is done depends on the application. If, for example,
global iterative methods for solving linear systems like Multi-Grid or Conjugate Gradient
are supposed to be parallelized, it is sufficient to choose load items in such a way that the
communication demands are minimized. Measures of importance can be the total length of
subdomain boundaries, the variance in boundary-length between all pairs of neighbors or
the maximum degree of the cluster graph [21]. The details depend on the communication
characteristics of the parallel system, especially on the values of overhead and latency
(cf. Sec. 3.2). For simplicity, the total length of subdomain boundaries is considered in
existing implementations of dynamic load balancing for adaptive FE calculations [83] (it
should be pointed out that only few such implementations really exist currently).

The boundary length is a measure for the total amount of communication in each step
of the algorithm. It is equivalent to the cut size. Thus, partitioning heuristics as described
in Section 3 can be used (or at least adapted) to determine which load items to move.

Finite element meshes are usually partitioned along element boundaries. To be able to
apply partitioning heuristics, the element graph can be used which contains a node for each
element of the mesh. Edges in this graph express neighboring relations between elements.
If we talk of moving load items in the following, this can either be elements or nodes of
the element graph. We will use both notations synonymously.

4.3.2 The Special Case of DD-Preconditioning

Some applications like modern preconditioning techniques for finite element simulations [12]
lead to additional requirements on the geometry of subdomains. The convergence charac-
teristics of such preconditioned solvers is, among other things, determined by the shape
of the partitions [79]. If, for example, domain decomposition techniques are used as pre-
conditioning for conjugate gradient solvers [8], the ratio between the length of the longest
and shortest “boundary edge” (which is a part of the domain boundary shared with a
single neighbor) determines the convergence of the global iteration. On the other hand,
the time needed for the local subdomain solutions is influenced by the “shape” of the sub-
domains, i.e. their ratio between area and diameter and whether they are convex or not.
Any load migration strategy has to take these additional constraints into account in order
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Figure 20: Partition generated by the spectral method (le), result after aspect-ratio opti-
mization (ri).

to minimize the overall execution time.

A “shape optimizing” load migration is a complex task where currently only some very
simple heuristics are known [13, 21]. They aim at optimizing the aspect ratio of subdomains.
Figure 19 shows the definition of aspect ratio. It is given by the ratio between the radius of
the largest inscribed circle to the radius of the smallest surrounding circle of a subdomain.
Especially the inscribed circle is hard to maintain during a movement of elements. Thus,
the existing heuristics in [13, 21] use approximations as described in Figure 19. They
define the radius of a subdomain D, mapped to processor p € U as 1, = y/|D,|/7 (in
the 2D-case), approximating its area by the number of elements. The idea to optimize
the shape is based on a migration of elements lying far away from the center of gravity of
their subdomain. The distance of an element from the center of its cluster is normalized
by the radius of the corresponding subdomain [13]. The change in shape is then set to the
changing value of this measure for the originating and the destinating cluster of an element
which is supposed to be moved:

d(0p, v) 1 d(dg,v)

Tp T'q

f(v,D,) = -1 (13)
In equation (13), d(v,w) is the Euclidean distance between two nodes and 0, is the center
of gravity of cluster p. If elements are to be moved from cluster p to cluster ¢, equation
(13) is used to determine the specific elements [21].

Although f(v, D,) is only an approximation to the real aspect ratio, it improves this
measure by up to 40% compared to a movement only accounting for cut size. Figure 20
shows an example of a zoom into a partition of the mesh “airfoill”. The partition on the
left is calculated by spectral bisection, the right one is determined from an unbalanced
partition using dimension exchange to determine “how much” and equation (13) for the
“which” [21].
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5 Conclusions

We gave a review of static and dynamic load balancing for applications from the field of
scientific computing. We showed that both kinds of balancing problems can be modeled
as graph embedding tasks.

The static problem of mapping a graph originating from such application (i.e. a mesh)
onto a distributed system can be considered as being solved, at least for the majority of
applications. Very efficient partitioning libraries allow the easy parallelization of FE-codes,
even if the mesh is very large.

If the application is dynamic, i.e. if the mesh is adapted to the solution during run-
time, a number of load balancing algorithms exist to determine how much load to move in
which direction of the processor network in order to preserve load balance. Again, for the
majority of applications the load balancing problem can be considered as being solved. But
as there are currently only very few existing parallel implementations of adaptive codes,
the balancing algorithms were not yet able to show their advantages or disadvantages.

If the solvers used in scientific codes are very complex, additional problems arise which
complicate the static as well as the dynamic load balancing task. Especially for DD-
preconditioning, additional constraints on the shape of subdomains need extra effort in
partitioning and load balancing. Here, only very simple heuristics currently exist.
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