
YRM: An Advanced Resource Manager

Daniel L. Reese Scott V. Hansen David B. Jackson Quinn O. Snell Mark J. Clement

{dreese, scott}@cs.byu.edu jacksond@mhpcc.edu {snell, clement}@cs.byu.edu

Computer Science Department
Brigham Young University

An effective computer resource manager can give industry important computing resources without
an increase in hardware investment. Computer resource managers access idle time that is
available on most existing computers systems within an organization without interfering with their
original, dedicated purposes. Although parallel computing is common to the UNIX operating
system, accessing the large number of machines not included in this particular computer hierarchy
would significantly increase computational capabilities. This extra resource would be especially
important for processing large and complex problems common to advanced research groups. The
BYU Resource Manager (YRM) accesses all resources within a heterogeneous computer system to
effectively use their idle time. YRM provides advanced features including data transmission
encryption, and a standard communication protocol between all data components. It allows
computer resources to be reserved in advance, and has visualization tools to assure a user-friendly
environment. And it can effective use non-dedicated resources when they are available and provides
meta-computing capabilities. These advanced features of the YRM resolve problems that are not
well addressed by existing computer resource managers.

1 Introduction

The need to use existing computer resources more
effectively is attractive both from an economic and a
computational standpoint. Consequently various
groups have developed software to more effectively
use existing computer systems. The main emphasis
has been to combine a large number of processors to
emulate a single, “meta-computer,” but without
incurring large monetary investments.

The current approach, while successful in solving
many serious problems inherent to supercomputing,
are still not attractive enough to motivate wide-scale
adoption. In particular, current computer resource
management systems fail in varying degrees to meet
the following essential criteria necessary to facilit ate
wide-scale use.

1.1 Criteria

Use of Heterogeneous Resources
Computer resource management should solve
multiple problems on a variety of computer hardware
resources. In particular, the Windows operating
system has largely been ignored by the

supercomputing community. A computer resource
manager system should be portable, easil y adapt to
various problems, and have the capabilit y to use all
available hardware resources. It should also provide
the abilit y to use non-dedicated resources when they
are available.

Data Security
Secure data encryption and use authentication are
absolutely necessary – no one without authorization
should have access to system resources or user data.
This is especiall y true for environments where the
hardware resources and the network are shared or
otherwise insecure.

Standard Communication Protocols
A standard communication protocol is essential to a
computer resource management system to prevent
incompatibiliti es between various computer systems
and their software. This protocol must provide the
means for describing system resources and how they
are being used.

Graphical Interface
To facilit ate the use and administration of any
computer resource management system, a graphical

interface should be provided. The abilit y to visualize
the complex system will assist users and
administrators to use the system and its resources
eff iciency.

Advance Reservations
The abilit y to reserve resources in advance guarantees
the use of the system for a specific time period. This
abilit y provides users with more flexibilit y in how
they use the system.

Meta-computing Capabiliti es
Meta-computing allows more computing resources to
be shared across large physical distances. A computer
resource management system must facilitate this
sharing and provide advanced accounting and policy
management capabiliti es.

1.2 Related Work

Current computer resource managers fail to
completely address each of the important issues
above. For instance, neither Condor [3] nor
Loadleveler [4, 5], two advanced computer resource
managers, support data encryption or advance
resource reservations.

Legion [6], another computer resource manager, does
not support Windows – that capabilit y is currently
under development. In addition, Legion does not
support advance resource reservations.

Other resource management systems such as PBS,
LSF, Codine and NQE do not support data encryption
or advance resource reservations. Of these, only LSF
supports the Windows environment.

YRM differs from all current systems in that it is
implemented in Java. Thus, YRM will run on any
computer or computer system with only minor
modifications. This attribute minimizes development
time and allows easier software bug detection.

YRM is also the only resource management system to
support data encryption during network
communication. In addition, no other management
system takes advantage of non-dedicated computing
resources, or allows resources to be reserved in
advance.

2 Design and Implementation

YRM is built from modular components that meet
each of the basic criteria of an advanced resource

manager as li sted above. The default behavior of
each component can be modified using its simple
configuration file. Because of YRM's modular design
each component can be completely replaced without
affecting the rest of the management system.
Designers can thereby use or test various algorithms,
or customize a particular component for specific
applications. Modularity allows extensive design
flexibilit y and easy product evolution. This capabilit y
is further enhanced by designing each component in
YRM to handles only one aspect of the resource
management process [1, 10]. Figure 1 ill ustrates the
design of YRM.

 There are six major components:

• Domain – the top level component of YRM.
It facilit ates interaction between the other
components and provides an interface to the
computer resources.

• Job Queue – provides persistent storage for
job information.

• Scheduler – decides when and where jobs
will run.

• Controller – executes the decisions of the
scheduler. It manages the resources in the
system and monitors running jobs.

• Node Service – gives the controll er access to
the computing resources such as cluster
workstations or supercomputer nodes.

• Visualization Tool – provides a powerful and
user-friendly graphical interface to the
system.

2.1 Domain

The domain is the top level component of YRM. It
provides vital communication to the components of
the YRM system. It also provides a connection
between the YRM system and the available computer
resources.

The domain receives job requests from users and
returns information necessary for those users to
confirm their requests. The domain also reports the
user’s job status. It also acts as a conduit through
which administrators may configure the various
components in the system. This does not preclude
administrators from directly configuring components
that are designed to be configured independently.
The scheduler (described below) assures this
capabilit y.

A central point of interaction simpli fies the system
and maintains a consistent security architecture. The
domain allows users to continue to use a standardized
communication protocol regardless of the internal
system demands.

2.2 Job Queue

The job queue provides persistent storage about job
information that have been submitted to the system.
This information is persistent to assure failure
recovery. The modular nature of YRM allows job
information to be created and stored in any desired
location or format. For instance, users may choose a
storage location based on their security preferences,
on performance, or similar criteria. This flexibilit y
allows YRM to be used in a wide variety of
environments and needs. YRM stores job queued
information on a disk in an encrypted format. Other
possible alternatives to this default would include an
LDAP directory service, or a database.

2.3 Scheduler

The scheduler decides when jobs in the system will
run and what computer resources they will use. YRM
takes advantage of the powerful capabiliti es of the
Maui scheduler [7]. Users can submit jobs for
execution when the required computer resources
become available or reserve those resources for future
use. YRM simplif ies the interface to Maui to make
the system easier to use, but maintains most of Maui' s
commonly used features. Maui can be configured
through the domain component of YRM or by the
tools provided with Maui, if necessary. Maui has
been used extensively on UNIX systems, but a
Windows port developed at BYU is available.

2.4 Controller

The controller is responsible for carrying out the
decisions of the scheduler. The controller starts jobs
using the resources allocated by the scheduler. It
stops or cancels jobs when instructed. It also
monitors each job to insure that the job only uses the
resources that have been allocated to it.

The controller also manages and controls access to
the resources in the domain. Physical resources are
usually cluster workstations or supercomputer nodes.
The controller interacts with the nodes in the domain
and gives resource information to the scheduler and
end users. It also keeps track of non-physical
resources in the domain such as software licenses.
The controller uses YRM' s standard communication
protocol to present an aggregate view of the system
resources and allow access to them.

2.5 Node Service

The node service gives the controller access to the
computing resources in the domain. The node service
is a system-level service or daemon the controls each
node in the domain. It is responsible for executing
the controller' s commands and reporting state
information to the controller. It also monitors a job' s
use of resources and reports any unauthorized activity
to the controller. YRM provides a screen saver that
can activate the node service when a computing
resource is idle.

2.6 Visualization Tool

The visualization tool provides a powerful and user-
friendly graphical interface to YRM. This tool allows
users to view information about and make changes to
YRM. The visualization tool presents the resource
manager’s complex data in a compact graphical
format. It is a web-based Java applet. Users may
submit jobs using this tool. A command line utilit y is
also available for submitting jobs. This utilit y
translates simple Loadleveler and PBS job submission
files into YRM' s standard communication format and
transmits them to the specif ied domain. The tool can
also interact directly with the Maui scheduler. The
visualization tool detail s are discussed further in
section 3.4.

3 Evaluation of YRM Features

This section discusses how YRM meets each criteria
for an computer resource management system.

3.1 Heterogeneity

YRM is designed to be easil y ported. Most of YRM is
written in Java. This allows YRM to be run on
virtuall y any machine with minimal modif ication.
The node service is written in Java, but it does use a
small native library for operating system calls that are
not supported in Java. YRM currently supports
Windows and Linux, but can be ported to other
operating systems easil y. Computers with different
operating systems may be used simultaneously.

Figure 2 shows a typical system that uses YRM to
provide a cluster based supercomputing environment.
The physical resources and jobs in the system are
shown. The currently running jobs have been mapped
onto the resources that they are using.

Computer resources in YRM may be dedicated or
non-dedicated. Dedicated resources are constantly
available for use by the resource management
architecture. Non-dedicated resources can be
configured to be available for specific time periods.
During this time, YRM uses the capabiliti es of the
node. The node service screen saver can also be
configured to contact the domain when it is active and
computing resources are available.

YRM can be used in situations when workstation
computers sit idle for long periods of time each day,
typical to a corporation or university. YRM can to tap
into the numerous Windows based workstations, or
into the UNIX based systems.

Figure 2 is a graph of the number available processors
over time of one of BYU’s computer labs. At any
time during the day, there are processors available to
run jobs. At night, nearly every processor is
available. Taking advantage of the increase in
available computing resources increases the amount
of computation possible.

0

10

20

30

40

50

60

Series1

Figure 3 below shows the use of a few computers
during a twenty-four hour period. Most are unused
for large blocks of time. The diff iculty in using these
computing resources lies in determining how long a
given computer will remain idle and available for use
by YRM. This is an area of future research.

3.2 Security

YRM protects data by encrypting it before they are
transmitted over a network. YRM uses the Diff ie-
Hellman [11] key agreement protocol to construct a
session key to assure encryption during transmission
over a network. Encrypted communication occurs
between the controlli ng process on a node and the
controller. It also occurs between the domain and any
external connection. YRM' s node control process,
visual tool and command li ne utilit y all support this
encryption.

The Diff ie-Hellman protocol does not provide
authentication and is therefore vulnerable to a man-
in-the-middle attack. YRM authenticates
communication using a shared password. When
machines exchange their public keys during the
Diff ie-Hellman protocol, they are encrypted using a

password-based cipher [13]. Thus, any attacker must
know the password in order to complete a successful
man-in-the-middle attack. The alternative to a shared
password is to use third party certif ication such as
PKI. Because most resource management
architectures are full y controlled by one
administrative body, shared passwords are not
unreasonable. Also, this password can be changed at
any time without affecting the system. Diff ie-
Hellman provides equivalent security to RSA [12]
using equal key sizes.

Generating a session key for every communication
decreases performance. YRM has the abilit y to cache
each session key for a set amount of time. Reusing
cached session keys increases performance, but allows
more opportunity for security breaches. An
administrator can balance these confli cting goals by
configuring the time a session key will remain valid
in the cache. By default, a new session key will be
generated for every connection.

3.3 YSL: A Standard Communication Protocol

YRM uses BYU's Specification Language [14] (YSL)
as its standardized communication format. Using a
standard communication protocol increases
interoperabilit y between software programs in a
resource management architecture. YSL addresses
the limitations of previous resource management
communication languages.

YSL describes all aspects of a resource management
architecture. This includes resources, jobs,
reservations, poli cies, users, groups, configuration
information, queries and administrative commands.
Customized options inherent to the software allows
YSL to be expanded for future applications. The
standardization efforts of the Grid Forum [15] will be
supported.

YSL can also describe optional job characteristics and
preferences, such as communication patterns or
computational intensity – a capability that could be
used by a scheduler to make smarter decisions about
when and where to run a job. This is part of ongoing
work under development at BYU.

Globus has developed a standardized specification
language called RSL [16]. RSL is limited to
describing only the static resources needed by a job or
program. YSL is designed to describe all aspects of
resource management. In addition, RSL syntax is not

easil y read by people and does not use an industry
standard format such as XML.

YSL is written using XML, an industrial standard for
describing information. XML is an ideal format for
capturing the state of a distributed system [2]. A
great effort has gone into producing generic tools to
use of XML. YRM takes advantage of these tools to
create, parse and manipulate YSL.

Below are two examples of YSL. The first is a
description of a node and the resources it provides.

<node name = “orion-12” state = “idle”>
<processor count = “2”/>
<memory amount = “128”/>
<swap space = “ 256”/>
<disk space = “2048”/>

</node>

The second is a description of a job and its resource
requirements.

<job name = “job1” state = “active”>
<location

initalDirectory = “c:\users\temp”
inputFile = “in.txt”
outputFile = “out.txt”/>

<executable name = “test.exe”/>
<arguments content = “-u dreese”/>
<time limit = “120”/>
<requirements>

<node count = “2”/>
<memory amount = “64”/>
<swap space = “128”/>
<disk space = “1024”/>
<os type = “Windows”/>

</requirements>
</job>

3.4 Visualization

The information of the YSL screen is shown in Figure
4. The left section of the information screen shows a
visualization of the job queue. The vertical axis
represents the amount of resources the job requires
and the horizontal axis is a logarithmic representation
of that job’s time limit . The right side of the screen is
a visual representation of the nodes in the domain.
Jobs and nodes are color-coded according to their
state.

Only information appropriate for each user is shown.
Administrators see information about all jobs,
whereas each user can only see information about
their own jobs. Any user can cancel or place and
remove holds on jobs to which they have access. In
addition, administrators can explicitl y start a job.
Detailed information about a job can be viewed in the
lower right portion of the screen by clicking the job.

Node information is displayed to all users. Selecting
a job will highlight the nodes that the job is currently
using Users can view detailed information about a
node in the lower right portion of the screen by
selecting that node. Administrators can manually
make any resource unavailable for use. This method
is more effective to avoid job failures than it would be
to merely disconnect the node from the domain.

Presenting the complex job and node information in a
compact visual representation simpli fies the use of the
system. This helps users to more full y understand
what is happening in the system, and allows them to
make more informed decisions. More detailed
information is also available as needed.

3.5 Reservations

Advance reservations allow users to reserve resources
for future use. They guarantee the use of resources
for a specific time period. Advance reservations have
a definite beginning and ending time, and the
reserved resources are only accessible by the creator
of the reservation.

Advance reservations are valuable to administrators
who wish to dedicate a group of resources for a
particular group or job. For example, a professor may
want to reserve a one-hour block immediately after
class for student use. Users who want to run
interactive jobs during convenient times can reserve
needed resources in advance during those times.

Instead of being forced to wake up whenever
resources needed for a debugging session become
available, a developer can reserve those resources
during normal work hours.

Advance reservations are necessary for meta-
scheduling environments. In order to be able to use
resources at different locations together to solve a
problem, all resources must be available at the same
time. With advance reservations these resources can
be scheduled at the same. Users may wish to schedule
a telescope at the same time that processing nodes and
network bandwidth are available.

Figure 5 shows the reservation screen of the
visualization tool in YRM. Users can view the
availabilit y of resources over time and choose an
appropriate time to reserve the needed resources.
Users can drag on the availabilit y graph and the
processor number, start time and duration will be
updated on the left side of the screen.

3.6 Meta-Scheduling
The YRM is able to participate in a meta-scheduling
system.

4 Conclusion

YRM is an advanced computer resource management
system designed to meet a large number of industrial
needs. It solves problems existing in current systems.

• YRM takes advantage of all resources in a
heterogeneous environment including non-
dedicated nodes.

• YRM authenticates users and encrypts data.
• YRM uses YSL as its standard protocol for

all communication.
• YRM has a powerful, user-friendly graphical

interface.

• YRM allow users to make advanced
computer resource reservations.

• YRM can participate in a meta-computing
environment.

YRM uses dedicated resources effectively and will use
non-dedicated resources whenever they become
available. The abilit y to use non-dedicated resources
decreases job turn around time and the time jobs are
in the queue before execution. It also increases
throughput.

Because of its modular and customizable nature,
YRM is a tool that can generate new understanding in
computer resource management research. It is
suff iciently flexible and customizable to provide a
robust production system. YRM also addresses and
resolves problems in current resource managers.

4.1 Future Work

In a shared computer resource environment, it is
important to maximize the time each resource is
dedicated to supercomputing. However, to provide a
stable resource pool the dedicated time should be as
continuous as possible. The node service screen saver
could be modified to record information about its
usage patters and dynamically calculate an optimal
time during which that resource would be available
for dedicated use. This type of usage tracking would
be more flexible and possibly more effective than
static configurations.

It is possible that a more appropriate and effective
method of session key caching can be developed..
Two potential alternatives are to (1) generate a new
session key for each job and (2) use password-based
session keys. Passwords are easier to remember and
use than numerical keys and might provide a means
for users to “safely” communicate with interactive
jobs.

Currently, the only parallel language supported is
MPICH. To provide a more useful resource
management architecture [1], support for other types
of parallel languages, such as PVM and HPF, could
be added.

YRM has been successful in a small clustered
computing environment. More information is needed
about how YRM performs when deployed over a more
demanding arena. Specificall y, YRM needs to be
tested in an open-lab and Internet environment.

Using performance surfaces [8] in YRM will allow
jobs to be scheduled to use more appropriate
resources. This will increase performance for certain
types of jobs.

5 References

[1] James Patton Jones. NAS Requirements
Checkli st for Job Queuing/Scheduling Software.
NAS Technical Report NAS-96-003, NAS, NASA
Ames Research Center, April 1996.
URL http://www.nas.nasa.gov/Pubs/TechReports/
NASreports/NAS-96-003/jms_req.html

[2] Rohit Khare and Adam Rifkin. Capturing the
State of Distributed Systems with XML. In World
Wide Web Journal Special Issue on XML, Volume 2,
Number 4, Fall 1997, pg 207-218.
URL http://www.cs.caltech.edu/~adam/papers/xml/
xml-for-archiving.html

[3] University of Wisconsin-Madison. Condor.
URL http://www.cs.wisc.edu/condor/

[4] IBM. Loadleveler.
URL http://www.rs6000.ibm.com/software/
sp_products/loadlev.html

[5] Maui High Performance Computing Center. SP
Parallel Programming Workshop.
URL http://www.mhpcc.edu/training/workshop/
loadleveler/

[6] University of Viginia. Legion.
URL http://legion.virginia.edu/

[7] Maui High Performance Computing Center.
Maui Scheduler.
URL http://www.mhpcc.edu/maui/

[8] Mark J. Clement, Glenn M. Judd, Joy L.
Peterson, Bryan S. Morse, and J. Kelly Flanagan.
Performance Surface Prediction for WAN-Based
Clusters. In Proceedings of the 31st Hawaii
Interantional Conference on System Sciences,
HICSS-31, January 1998.

[9] Brigham Young University. Y Resource
Manager.
URL http://ncl.cs.byu.edu/yrm/

[10] Chapin, S., M. Clement and Q. Snell . A Grid
Resource Mangement Architecture. BYU Technical

Report BYU-NCL-99-100, NCL, Brigham Young
University, October 1999.
URL http://ncl.cs.byu.edu/publications/grid/

[11] W. Diffie and M.E. Hellman. New directions in
cryptography. In IEEE Transactions on Information
Theory, IT-22: 644-654, 1976.

[12] RSA Security.
URL http://www.rsa.com/

[13] RSA Laboratories. Password-based
Cryptography Standard.
URL http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

[14] Brigham Young University. Y Specification
Language.
URL http://ncl.cs.byu.edu/yrm/ysl/

[15] Grid Forum.
URL http://www.gridforum.org/

[16] Globus. Resource Specification Language.
URL http://www-fp.globus.org/gram/rsl_spec1.html

