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Abstract 

As the Internet commerce becomes a more important part  of the economy, network security is receiving more emphasis.  
Time spent in data encryption can be a significant performance bottleneck for many applications.  Elliptic Curve Cryptography (ECC) 
has been shown to provide stronger encryption than conventional integer factorization schemes such as RSA or discrete logarithm-
based systems such as Diffie -Hellman.  This research explores the efficiency advantages of ECC by implementing and evaluating the 
underlying finite field arithmetic of the ElGamal encryption protocol using both polynomial basis (PB) and normal basis (NB) 
representations.  The Normal basis implementation performs more than two times as fast as the polynomial basis representation and 
more than 50 times faster than traditional encryption schemes.   
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1 Introduction 

Private and public key cryptography [1] are two major tools for data security.  Private key schemes such as the Data 

Encryption Standard (DES) allow fast encryption and message authentication.  Public key schemes provide unique ways for key 

distribution and assurance of sender’s authenticity and non-repudiation.  There are three families of public key algorithms that have 

considerable significance in practice.  These include integer factorization, discrete logarithm, and elliptic curve-based schemes [2, 3].  

Integer factorization-based schemes such as RSA [4] and Discrete Logarithm-based schemes such as Diffie-Hellman [5] and digital 

signature provide intuitive ways of implementation.  However, both schemes are vulnerable to cryptanalysis because of the existence 

of sub-exponential algorithms for cracking such cryptosystems [7].  In this regard, elliptic curve cryptography, first introduced by 

Koblitz [2] and Miller [3], is the most secure public key cryptographic method available [6,8].  Since the computational complexity 

for breaking ECC is totally exponential to the key size, ECC offers smaller key sizes for the same level of cryptographic security than 

conventional systems.  For example, ECC with a key size of 173 bits provides the same level of cryptographic security as RSA with a 

key size of 1024 bits.  This results in smaller system parameters, bandwidth savings, faster implementations and lower power 

consumption.  In addition, elliptic curves over finite fields offer an inexhaustible supply of finite abelian groups, thus allowing more 

flexible field selections than conventional discrete logarithm schemes.  Because of these advantages, ECC has attracted extensive 

attention in recent years [9,13].  It is also expected that ECC will be widely used for many security applications in the near future. 

Previous research on ECC has covered a broad range of topics from security issues and standardization to implementation 

and performance [14,21].  Many algorithms have been designed to improve the performance of the underlying field arithmetic.  
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However, most of those methods are limited to polynomial base representations.  Normal basis in software has seldom been 

studied.  Several significant questions remain unanswered, including: 

• “What is the relative efficiency of the normal and polynomial basis representations for field arithmetic?” 

•  “How efficiently may theoretical normal basis algorithms be implemented in software?” 

•  “What is the actual efficiency advantage of ECC when compared with traditional public key schemes?”  

This information plays an important role in the design of a public key cryptographic system when speed is important.  

Different underlying basis representations may lead to drastic changes in the performance of corresponding cryptographic systems.  

This research provides an implementation and evaluation of finite field arithmetic, elliptic group operations, and an elliptic curve 

cryptosystem using both polynomial and normal basis representations.  A thorough comparison of the software performance of 

polynomial and normal basis representations is also provided. 

2 Elliptic Curve Mathematics 

ECC involves several areas of mathematics including finite fields, representations of field elements, and group theory.  In this 

section we describe the mathematics necessary to understand the main algorithms being investigated in this research. 

An Elliptic Curve (EC) over a finite field consists of a set of elements of an additive abelian group.  Field arithmetic 

operations affect overall performance significantly.  The efficiency of field arithmetic operations presumably depends on how they are 

represented.  In an EC cryptosystem, a message can be embedded as an element of the group, and group operations are applied for 

encryption / decryption of the message.  Such operations are fundamentally nonlinear and automatically randomize the input message 

resulting in a drastic change in the output . 

These schemes make it difficult  to deduce the original message from the randomized output [24, 25].  Theoretically, the 

security of EC cryptosystems relies on the difficulty of solving a discrete logarithm problem (DLP) on an additive group of points of 

an EC, which is much harder than and different from those of the two conventional public key cryptosystems (conventional integer 

factorization schemes such as RSA or discrete logarithm-based systems such as Diffie-Hellman) [6, 8, 14, 27].  This is because current 

sub-exponential algorithms for attacking the encryption are only applicable for solving the DLP on a multiplicative group of a finite 

field and are of little value in attacking the analogous elliptic curve problem. 
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2.1 Polynomial Basis (PB) verses Normal Basis (NB) Representation 

There are two equivalent representations for an element of a finite field GF(2n), PB and NB [19].  A PB is of the form {1, α, 

α2, … , αn-1}, where α is a root of an irreducible polynomial f(x) of degree n over field F2.  An element in GF(2n) can then be 

represented as a polynomial:  

{cn-1αn-1 + cn-2αn-2 + … + c2α2 + c1α + c0 | ci = 0 or 1}, 

or in vector form {cn-1cn-2 … c2c1c0}.   

A NB is of form {α, α2, α2^2, … , α2^(n-1)} for some α ∈ GF(2n).  Similarly, an element in GF(2n) can be represented in NB as 

a vector {cn-1cn-2… c2c1c0}, where ci = 0 or 1.  NB can also be optimized for some values of n, leading to two types of optimal normal 

basis (ONB) called Type I  and Type II .  A field GF(2n) is of Type I if n satisfies conditions: (n + 1) is prime and 2 is primitive in F(n + 

1).  (Note that “2 is primitive in F(n+1)” means that 2 generates all elements of prime field (n+1).  For example, if (n+1) = 5, then 20 = 

1 mod 5, 21 = 2 mod 5, 22 = 4 mod 5, 23 = 3 mod 5, 24 = 1 mod 5.  Therefore, 2 generates all elements: 1, 2, 3, 4 in field of 5.)  A field 

GF(2n) is of Type II if n satisfies conditions: (2n + 1) is prime and: either 2 is primitive in F(2n + 1) or (2n + 1) ≡ 3 mod 4 and 2 

generates quadratic residues in F(2n + 1). 

NB and PB can be converted to each other.  For example, for Type I ONB, since 2 is primitive in F(n +1), each term (bit) of 

an element in a NB with the form: ciα
2^i corresponds to a term (bit) of an element in a PB with the form ciα

k where k = 2i mod n.  This 

correspondence can be precomputed into a table.  An element in Type I ONB can then be converted into an element in PB by 

permutation of every bit of the element through table-lookup, and vice verse.  The irreducible polynomial for the corresponding PB is 

(1 + α + α2 +… + αn-1).  For Type II  ONB, each term of an element in ONB with the form: ciα
2^i corresponds to two terms of an 

element in a PB with the form: ciα
k where k = 2i mod n or k = (2n + 1 - 2i) mod n.  Since the irreducible polynomial for the 

corresponding PB is (1 + α + α2 +… + α2n) in this case, an element in PB is twice as long as the corresponding element in Type II  

ONB. 

2.2 Finite Field Arithmetic Operations 

The efficiency of EC algorithms heavily depends on the performance of the underlying field arithmetic operations.  These 

operations include addition, subtraction , multiplication, and inversion.  Given two elements, (an-1…a1a0) and (bn-1…b1b0), these 

operations are defined as follows. 

Both addition and subtraction  are same between the two representations: 

(an-1…a1a0) ± (bn-1…b1b0) = (cn-1…c1c0), where ci = ai + bi over F(2). 
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Note that in GF(2n), since (an-1…a1a0) + (an-1…a1a0) = (0…00), each element (an-1…a1a0) is its own additive 

inverse.  Addition  and subtraction  can be implemented efficiently as component-wise exclusive OR in both representations. 

Multiplication  and inversion are different between the two representations.  In the PB representation, an irreducible 

polynomial f(α) of degree n over field F2 is needed and multiplication  is defined as: 

(an-1…a1a0) (bn-1…b1b0) = (cn-1…c1c0), where (cn-1αn-1 + … + c1α + c0) is the remainder when the polynomial (an-1αn-1 + … + 

a1α + a0)(bn-1αn-1 + … + b1α + b0) is divided by the polynomial f(α).  Multiplication contains two steps: polynomial (partial) 

multiplication and modular reduction .  Partial multiplication  can be implemented using the “shift and add” idea that has been widely 

employed for multiplication of integers [22, 23].  Since addition in GF(2n) does not generate carries and is simply component-wise 

exclusive OR, this step is simplified.  Further simplification can also be achieved when the two operands are the same.  In this case, 

partial multiplication is implemented with the squaring operation.  Since: 

(an-1αn-1 + … + a1α + a0)(an-1αn-1 + … + a1α + a0) = (a2
n-1α2n-2 + … + a2

1α2 + a0) 

The squaring operation can be implemented by inserting a 0 bit between every two original polynomial bits.  The next step is 

modular reduction.  This step can be optimized by selecting the irreducible polynomial f(x) as a trinomial or pentanomial.   

Inversion in the PB representation is defined as follows: Given an element (an-1…a1a0) and an irreducible polynomial f(x) of 

degree n, find the element  

(bn-1…b1b0) such that 

 (an-1…a1a0) (bn-1…b1b0) ≡ 1 mod f(x). 

The best-known inversion  method is the “almost inverse algorithm” recently proposed by R. Schroeppel et al [15].  Briefly, it 

first computes an intermediate element (cn-1…c1c0) that satisfies the equation: 

 (an-1…a1a0) (cn-1…c1c0) ≡ xk mod f(x) 

and then produces the inversion, (bn-1…b1b0), by dividing out the xk from (cn-1…c1c0).   

Inversion in the NB representation is defined as follows: Given an element (an-1…a1a0), find the element (bn-1…b1b0) such 

that (an-1…a1a0) (bn-1…b1b0) = 1, where 1 is defined as: 

1222 ...
−

+++== ∑
=
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αααα
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2.3 Elliptic Curve Cryptography 

An EC over GF(2n) is defined to be the set of points (x, y) satisfying an equation of the form y2 + xy = x3  + ax2 + b, where a, 

b, x, y ∈ GF(2n), b ≠ 0, together with an extra point O, called the point at infinity [24-26].  The elliptic curve discrete logarithm 

problem (EC-DLP) is as follows: given an EC over the field GF(2n), a base point B of order n and a point P on EC, determine the 

integer x, 0 < x < n-1, such that P = xB, provided such an x exists.  The security of ECC relies on the computational complexity of the 

EC-DLP, which is a much harder problem than either the integer factoring problem or general DLP [6, 14]. 

     All public key cryptographic schemes that make use of the DLP in finite fields can be implemented to work in the EC case 

[6, 15, 17].  In this research, we choose the ElGamal protocol, implemented an EC version of it, and evaluated the overall performance 

of the cryptosystem.   

The protocol works as follows: Assume that the plaintext message m has been imbedded as point Pm on an publicly known 

EC over the field GF(2n) and a base point B on EC is publicly known.  Users A and B start by randomly choosing integers kA and kB, 

which are kept secret.  A and B compute their public keys PA = kAB and PB = kBB respectively.  To send Pm to B, A must randomly 

choose an integer r and sends the points (rB, Pm + rPB).  To read Pm , B must multiply rB by kB and subtract it from Pm + rPB.  Since Pm 

= Pm + rPB - kBrB, B is able to recover the message Pm.  However, for any third party C to break the encrypted message (Pm + rPB), 

they would need to solve EC-DLP. 

3 ARITHMETIC OPERATIONS OVER GF(2n) 

This section describes the performance of fie ld arithmetic operations over GF(2n) with field size ranging from 100 to 1279 

bits for PB and from 100 to 1019 bits for NB representations.   Experiments were performed on a 175 MHz Pentium II architecture 

with the Linux operating system.  Theoretically, once the field size n (where n is from GF(2n)) is selected, the content of the input 

message should not affect the performance.  A message is a byte-string of a given size.  Since we can generate a random input 

message easily, a different random input message was used for each run.  Reported execution times are the average of 20 independent 

runs with 20 different input messages of the same size.  For the performance comparison between PB and NB representations, 5-10% 

difference in timings for the same type of operation is recognized as a significant difference in performance. 

 

3.1 Addition and Subtraction 

Addition and subtraction can be implemented efficiently by exclusive-ORing of two field elements.   The performance of these 

operations is illustrated and Figure 1.  It can be seen that the time complexities of Addition /Subtraction  are proportional to the field 
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size and vary from 0.13 to 1.15 µs over the field size range from 100 to 1279 bits for both ONB and PB.  This is expected from the 

given algorithm.  The fact that the execution time for these two operations is so low for both ONB and PB suggests that the bottleneck 

for the algorithm does not lie in these operations.  

3.2 Multiplication 

Polynomial basis:  Multiplication in PB contains two steps: partial multiplication and modular reduction .  For partial 

multiplication, we employ the “shift and add” strategy:  This algorithm runs in O(n*n/ws) time where n is the field size in bits, ws is 

machine word size.  Figure 3.2 shows that the performance of multiplication in PB varies from 87 to 8960 µs over field sizes ranging 

from 100 to 1279 bits. 

 

Normal basis:  The implementation computes multiplication  through shift, XOR, and AND.  First, we shift one multiplier 

consecutively and store the results for later lookup.  Since the lambda matrix can be pre-computed, we only need to rotate the other 

multiplier, lookup the lambda matrix table twice, and then carry out a simple XOR and AND.  This algorithm takes O(n*n/ws) time 

where n is the field size in bit and ws is the machine word size.  The execution time for this implementation is shown in Figure 3.2.  

Execution times vary from 108 to 6066 µs over field sizes ranging from 100 to 1019 bits. 

Figure 3.2  Execution time for Multiplication.
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Figure 3.1  Execution time for Addition / 
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Multiplication  in PB is about 17% faster than that of NB.  Both algorithms have similar time complexities.  The PB 

implementation uses a trinomial to enhance the performance.  The NB implementation uses table-lookup to simplify the computation.          

3.3 Squaring 

Squaring is just a special case of multiplication .  Both PB and NB implementations can be simplified for this special case.  

This algorithm also runs in O(n) (note that the n here is Field size in bits rather than machine word size).  The execution time for 

squaring  in PB is shown in Figure 3.3.  The NB implementation provides a  40% performance improvement on squaring over general 

multiplication. 

 

Figure 3.4 shows that the time for squaring is negligible when compared to the time for general multiplication .  This 100% 

performance improvement is equivalent to  (1 - 17%) = 83% improvement in squaring over multiplication in NB  This is more than 

Figure 3.4  Comparison of execution time 
forsquaring with multiplication in NB.
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Squaring with Multiplication in PB. 
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twice the performance improvement that  PB  achieves (40%).  This turns out to be the critical advantage of NB over PB 

with respect to overall performance. 

3.4 Inversion 

The “almost inverse algorithm” is the best-known method [15] for inversion in PB.   The algorithm contains two steps.  In the 

first step, the algorithm computes the intermediate polynomial B by repeatedly decreasing the length of polynomial F and G and 

increasing the length of polynomial B and C.  The time complexity for the first step is roughly O(n2 / ws) where n is field size in bits 

and ws is a machine word size (32 bits in our case).  The second step: dividing out xk, can be simplified by using a trinomial xn  + xt + 

1 where t > ws.  

This algorithm runs in O(n2) where n is field size in machine word.  Therefore, the overall time complexity is roughly O(n2 / 

ws) where n is field size in bits.  Experimental results for inversion using the above implementation are given in Figure 3.6.  Execution 

time for inversion varies from 77 to 7565 µs as the field size changes from 100 to 1279 bits.  This result is 10% faster on average than 

multiplication in PB.   

To further investigate any advantage of the “almost inverse” method, we also tested the performance of inversion using the 

conventional extension to Euclid’s algorithm [23] and the results are given in Figure 3.7 for comparison purposes.  It is clear that the 

conventional approach is not practical with respect to the run-time performance. 

3.4.1 Normal Basis  

 We implemented and evaluated two approaches for inversion in NB.  The first approach is based on Fermat’s theorem.  

Since the algorithm converts inversion to a chain of multiplication and squarings, and squaring runs in negligible time, the algorithm 

takes {log2(n-1) + the number of bits set in (n-1) –1} multiplications where n is the field size in bit units.  For example, for n = 155, n-

1 = 154 = 0x9b, log2(n-1) = 7, the number of bits set in (n-1) = 4, hence it takes   (7 + 4 –1) = 10 multiplications.  The performance of 

Figure 3.6  Comparison of Execution time for 
Inversion with Multiplication in PB.
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inversion for NB is shown in Figure 3.8.  It can be seen that the timings vary from 0.8 to 99.3 ms over the field size from 

100 to 1019 bits.  These timings are consistent with our analysis.  It is clear that this approach is very inefficient with respect to 

performance.   

 

 

The second approach is to take the efficiency advantage of the “almost inverse algorithm” in PB.  In this approach, a field 

element is transformed from NB into PB.  Inversion is then carried out in PB by using the “almost inverse” algorithm.  Finally the 

result is transformed back into NB.  The conversion between PB and NB is performed by means of table-lookup.  The results of this 

approach are shown in Figure 3.10.  The pure “almost inverse” method provides 10% speed advantages over the combination of the 

NB and the “almost inverse” method.  This result indicates that inversion  in NB can be implemented almost as efficiently as inversion 

in PB. 

  

Figure 3.7  Comparison of Execution time for "almost 
inverse" (INVf) and Euclid (INVs) Inversion in PB.
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Inversions in NB.
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4 Elliptic Group Operations 

Elliptic group operations include point negation (PN) , point  addition (PA) , point subtraction (PS), point doubling (PD) , and 

scalar multiplication (SM) .  Even though high-level implementations of these operations are same for PB and NB, the performance of 

them may be different since subroutines (underlying field operations) called in major functions may perform differently between PB 

and NB.  We have used both the fast and slow algorithms of the underlying field operations as subroutines for these Group operations.  

We will focus on a discussion of the performance of the fast implementations of the underlying field operations between PB and NB.  

4.1 Polynomial Basis 

Figure 4.1 shows that the execution time for  point addition and point subtraction are very close to each other.  This makes 

sense since point subtraction consists of point addition and point negation , and the time for negation is negligible.  Point doubling is   

Figure 3.10  Comparison of Execution time for 
Inversions in NB with those in PB.
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18.7 % slower than point addition.  This is probably because point doubling  contains one extra field squaring operation 

when compared to point addition.  Point addition consists of 1 squaring (S), 2 multiplications (M), and 1 inversion (I), which are 

equivalent to: 60% M + 2 M + 90%M =3.5 M based on our measurements of 1 S =  60% M and 1 I =  90% M.  Therefore, the extra 

squaring accounts for (60%M) / (3.5M) = 17% point addition .  Our measured time for point doubling is basically consistent with this 

analysis.  The 1.7% variation is probably attributed to the constant factors in implementation and random errors.  Scalar 

multiplications are the most time-consuming group operation.  The time for this operation varies from 0.04 to 50 s over  field sizes 

from 100 to 1279 bits.  This is more than two orders of magnitude slower than  point addition.  Theoretically, the algorithm takes (fs –

1) PD and (fs/2 – 1) PA where fs is the field size in bits.  Since PD = 118.7% PA  based on our measurements, we can estimate:  1SM 

≈ (fs – 1) * 118.7% PA  + (fs/2 – 1) PA = (1.687 fs – 2.187) A.  For example, for fs = 155, 1SM = (155*1.687 – 2.187) A = 259 A.  

Our measurements show the same order of magnitude of this correlation between scalar multiplication and point addition.   

4.2 Normal Basis 

The execution time for point negation is very similar to point negations in PB and negligible compared to timings of other 

group operations due to the same reasoning discussed earlier.  This is also the reason that point addition  and point subtraction have 

nearly identical execution times.  Normal Basis   point doubling  appears to take about the same time as point addition.  Theoretically, 

point doubling  takes an extra squaring relative to point addition  as analyzed before.  However, in NB, the time for squaring is 

negligible.  This results in the roughly equal timings between point doubling  and point addition .  Based on this reasoning, SM = (fs – 

1) *D + (fs/2 –1) A = (1.5fs –2) A.  For example, for fs = 155, SM = (1.5 * 155 –2) A = 231 A.  Our measurements show the same 

order of magnitude for this correlation between scalar multiplication  and point addition.  

Figure 4.3  Comparison of Scalar 
Multiplication between NB and PB.
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 Since scalar multiplication plays an important role in the overall performance, the performance of scalar 

multiplication is shown in Figure 4.3.  SM in NB is about 12% faster on average than SM in PB based on our measurements.  One 

point addition (PA) = 1S + 2M + 1I and one point doubling (PD) = 2S + 2M +1I.  In PB, PA = 3.5 M and PD = 4.1M.  Therefore,  

SM = (fs – 1) PD + (fs/2 –1) PA 

       =  (fs –1) * 4.1M + (fs/2 –1)* 3.5 M 

      = (5.85fs – 7.6) MPB. 

In NB, PA = PD = 1S + 2M + 1I 

   = 2M + 1I 

   = 2M + 0.9M 

   = 2.9 MNB 

Therefore, 

 SM = (fs – 1) PD + (fs/2 –1) PA 

        = (4.45fs – 5.8) MNB 

       = (4.45fs – 5.8) * 1.18 MPB 

       = (5.251fs – 6.844) MPB . 

The performance advantage of NB over PB can be estimated as: 

(SMPB –SMNB)/SMPB=((5.85fs–7.6)MPB  - (5.251fs – 6.844) MPB) / (5.85fs–7.6)MPB 

           = (0.599fs – 0.756) / (5.85fs – 7.6). 

For example, for fs = 155, (SMPB –SMNB)/SMPB= 10 %. 

Our measurements are correlated well with this analysis.  The major reason for this result is that the underlying squaring in 

NB runs in negligible time, whereas squaring  accounts for 60% of multiplication in PB.  Even though the underlying multiplication 

and inversion  in PB are slightly faster than in NB, the net effect is that SM in NB is 10 % faster than PB for SM. 

5 Elliptic Curve Version of ElGamel 

In this section, we report on our implementation and the performance measurements of an EC version and a conventional 

(non-elliptic curve) discrete logarithm-based version of the ElGamal encryption protocol.  There are three major parts of the algorithm 

that contribute to the overall performance of the protocol.  The first part is setting up some key-related data that is used for 

communications.  For example, in the EC version, we need to set up a field size, an elliptic curve, a base point on the EC along with 

public and private keys on both sides.   In the conventional approach, we need to set up a prime number, a primitive root (generator) of 
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the prime field, as well as public and private keys.  Since this part of the algorithm is performed only once and used for 

later communication between both sides, we assume this information is known and do not address its performance.   

The second part is the cost of communication.  Since this part of the algorithm re lies solely on the performance of a specific 

network system and varies from system to system, we also omit evaluation of this part.  The third part is the cost of data encryption 

and decryption.  Data encryption and decryption are the focus of this research and our analysis is focused on this part of the algorithm.    

5.1 Elliptic curve version 

The encryption process is implemented as follows: 

Input: Point B, PB; Curve EC; Field_element M. 

Output: Point Pr = rB; P = PM + rPB. 

 Field element r ←  random_element. 

 Point Pr ←  Scalar_multiplication (r, B). 

 Point P’  ← Scalar_multiplication (r, PB). 

 Point PM ← embed_message (M). 

 Point P ←  Point_addition(PM + P’). 

Return Pr, P. 

Since Scalar multiplication is much more time -consuming than any other operations in the encryption process, the encryption 

is expected to run in 2SM time.  The decryption process is implemented as follows. 

Input: Point B, P, Pr; Curve C; Field_element kB. 

Output: Field_element M. 

 Point P’  ← Scalar multiplication(kB, Pr). 

 Point PM ← Point_subtraction(P, P’). 

 Field element M ← PM.x. 

 Return M. 

The decryption process is expected to run in SM time since scalar multiplication is much more time-consuming than point 

subtraction and a simple copy operation.  The execution time for the EC version of the ElGamal protocol in PB and NB is shown in 

Figure 5.1.   In both PB and NB, the encryption process takes roughly twice as long as the decryption process.  This is consistent with 

our previous analysis.  The encryption in NB is 21.8% faster than the encryption in PB.  The decryption in NB is 14.5% faster than the 
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decryption in PB.  Based on our previous measurements for scalar multiplication ,  NB is 12% faster that that in PB.  We 

expect a 24% enhancement for encryption and a 12% enhancement for decryption for NB over PB.  Our testing results show the same 

order of magnitude for this correlation.  The variations are attributed to the implementation and random testing errors. 

5.2 Conventional version 

The conventional discrete logarithm–based ElGamal encryption process uses the same mathematical operations that a 

protocol like Diffie-Hellman would use.  It  is implemented as follows. 

Input: Big_integer p, g, y, M. 

Output: Big_integer a = gk mod p; b = ykM mod p. 

 Big_integer k ←  random_integer. 

 While gcd(k, p-1) ≠ 1 do: 

  k ←  random_integer. 

 a ← gk mod p. 

 b’  ← yk mod p. 

 b ← b’  M mod p. 

 Return a, b. 

Since the modular exponentiation (ME), xk mod p, for big integer k is much more time-consuming than any other operations 

in this protocol, it is expected that the encryption takes 2 ME times. 

 The decryption process is implemented as follows. 

Input: Big_integer a, b, x, p. 

Output: Big_integer M = b / ax mod p. 

 Big_integer a’  ← ax mod p. 

 Big_integer b ’  ← a’  -1 mod p. 

 M ← b / b ’  mod p. 

 Return M. 

This protocol is expected to run in ME time owing to the same reasoning applied above. 

 It should be noted that there is no efficient method to find a primitive root g (generator) of a prime p field for a very 

large p.  Fortunately, there are two well-known generator / prime pairs [30] available for our test as shown in Table 5.2.  One prime is 
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768 bits, the other is 1024 bits.  The performance of the conventional protocol over these two prime fields provides 

information for our comparisons. 

The execution time for the conventional protocol over these two prime fields is shown in Table 5.3.  As shown in the table, 

(encryption, decryption) takes (13.1s, 6.6s) and (29.8s, 15.2s) for the prime field of 768 and 1024 bits respectively.  Since the finite 

fields over these two field sizes are neither Type I nor Type II ONB, and we do not find trinomials for PB over these two field sizes, 

we cannot make a direct comparison among these protocols.  However, we can estimate the time for the corresponding EC version of 

the protocols on these two field sizes through curve fitting.  The time for (encryption, decryption) in PB are extimated to be (32s, 16s) 

and (66s, 33s) respectively over 768 and 1024 bit fields. 

 

               Table 5.3  Timings of CDLBV of ElGamal Protocol. 

KEY SIZE 768 1024 

Encryption (s) 13.1 29.78 

Decryption (s) 6.64 15.23 

 

The timings for (encryption, decryption) in NB are (28s, 14s) and (50s, 25s) respectively over 768 and 1024 bit fields.  These 

data are summarized in Table 5.4. 

Table 5.4  Comparison of the EC Version with Conventional DLBV for the ElGamal Protocol. 

KEY SIZE CONVENTIONAL DLBV  

ENCR            DECR 

EC USING PB 

ENCR        DECR 

EC USING NB 

ENCR         DECR 

768 13.1 6.64 32 16 28 14 

1024 29.78 15.23 66 33 50 25 

 

These results indicate that the conventional protocol is actually about twice as fast as the EC version of the protocols over the 

same field size.  However, the same key size (field size) represents different security levels for different protocols.  We need to 

compare the performance of these protocols under the same security levels.  To do this, we calculate key sizes in ECC that correspond 

to the key size of 768 and 1024 bits in the conventional protocol according to the formula derived from [6]: 

 KECC = 4.91 (KCONV)0.33 (Ln (KCONV Ln(2)))0.67 
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For KCONV = 768 bits, KECC = 151; for KCONV = 1024 bits, KECC = 173 bits.  Since key sizes of 151 and 173 bits 

are not available because of the non-existence of either trinomial in PB or ONB in NB, we use the results for 155, 183 bit key sizes in 

PB, and the results for 155, 174 bit key sizes in NB to compare with the results of 768 and 1024 bit key size in conventional protocols.  

Note that under such circumstances, the EC version represents slightly higher security levels than the corresponding conventional 

protocols.  The comparisons are given in Table 5.5.  It is clear that the EC version under both PB and NB performs much faster (over 

50 times) than conventional protocols.    

Table 5.5  Comparison of CDLBV ElGamal with EC Version of ElGamal Under Same Security Level. 

KEY SIZE CDLBV  EC USING PB  EC USING NB  
 ENCR DECR ENCR DECR ENCR DECR 
768 13.1 6.64 0.3 0.139 0.248 0.123 
1024 29.78 15.23 0.46 0.212 0.357 0.179 

 

6 Conclusions 

We have implemented and evaluated finite field arithmetic, elliptic group operations, and an EC version of the ElGamal 

encryption protocol over GF(2n) for n = 100 to 1279 bits using both polynomial and normal basis representations in software using a 

Pentium II Linux platform together with a conventional discrete logarithm-based version of the ElGamal encryption protocol. 

Finite field arithmetic operations include addition, subtraction, multiplication, squaring, and inversion.  Our results show that 

both addition and subtraction can be implemented very efficiently and the differences between PB and NB are small. Multiplication in 

PB using a trinomial as the irreducible polynomial is 17% faster than multiplication in NB.  Squaring, a special case of multiplication, 

can be implemented 40% faster than multiplication in PB, 100% faster than multiplication in NB.  Inversion in NB using a 

combination of basis conversion and the “almost inverse” method runs much faster than that using Fermat’s theorem-based approach, 

but 10% slower than inversion in PB with the “almost inverse” method. 

Elliptic group operations include point negation, point addition, point subtraction, point doubling, and scalar multiplication.  

Our results show that point negation can be implemented very efficiently in both PB and NB and the time is small compared to other 

group operations.  Point addition and subtraction runs in similar time in both PB and NB.  Point doubling runs 18.7% slower than 

point addition in PB.  It runs in similar time to point addition in NB.  Scalar multiplication runs 12% faster in NB than in PB probably 

because of the efficient implementation of the underlying squaring in NB. 

Our evaluation also shows that EC version of ElGamal encryption runs 22% faster in NB than in PB.  An EC version of 

ElGamal decryption runs 15% faster with NB than with PB.  EC versions of the ElGamal encryption / decryption protocols are more 
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than twice as slow as conventional discrete logarithm-based ElGamal protocol under the two tested field size of 768 and 

1024 bits.  When compared at the same level of security, EC version of ElGamal protocols runs more than 50 times faster than the 

conventional ElGamal protocol.       

6.1 Future Work 

 We have demonstrated that EC implementations of cryptographic  systems have obvious performance advantages over 

conventional systems and the trade-off between PB and NB implementations.  Possible areas for future work include: 

• Investigation of finite filed arithmetic in software for general prime field GF(p) under both PB and NB. 

• Improvement on the performance of EC protocols for large field sizes (> 500 bits). 

• Improvement of the implementation of scalar multiplication. 

• Faster field multiplication algorithm in both PB and NB. 

• Building a library of irreducible trinomials over a broad range of field sizes (as large as 2048 bits). 

• Performance of EC versions of other cryptographic systems (such as digital signature). 
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