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Researchers have shown machine learning techniques are 
able to perform just as well as more traditional algorithms 
on several problems. The following research demonstrates 
the ability of a simple single-layer neural network to find 
the shortest paths from each graph vertex to another when 
applied in a distributed fashion. The purpose being to show 
that a distributed neural network routing scheme can 
perform at least as well as the traditionally used Dijkstra’s 
algorithm. 

 
 
Introduction 
 
Common machine learning approaches successfully applied to the problem of 
communication network route finding include the network topology suggested by 
Hopfield and Tank in [1] as used by Lee and Chang in [4], the DIANNER approach 
described by Tseng in [2], and the reinforcement learning approach used by Boyan and 
Littman in [3]. The following research seeks to reproduce Tseng’s research in [2] in order 
to better understand the details involved in the implementation. 
 
 
Methods 
 
The following explanation is based on assumptions made about Tseng’s description with 
some modifications that improved performance in the initial stages. 
 
Running 
 
Each router in the communication network consists of a single-layer neural network. A 
detailed explanation of neural networks is beyond the scope of this paper (but can be 
found in [5]); suffice it to say that each neural network has an input for every possible 
destination in the communication network and an output for every port leading out of the 
router. When a packet arrives the destination is placed on the inputs of the neural network 
and an estimate of the cost of the path from the current router to the destination is output 
on each corresponding port. In other words, the output for port x will be how long the 
neural network estimates it will take a packet to travel from this router to its destination 
through port x. The packet would then be sent on the port corresponding to the lowest 
output. 



Training 
 
Before a router’s neural network can give meaningful outputs, it must first “learn” the 
costs of each path it could take to every possible destination. The initial outputs of the 
neural network will be completely random. To improve the path costs estimates, the 
router will send out “training packets” on every port to every destination. These packets 
can be routed using the initial random configuration of the network, or using a broadcast 
protocol. If the former is used, the packets will need a time to live parameter and a time 
out will be necessary on the router because the random initial configuration will almost 
assuredly contain routing loops. In the implementation used for this paper, a time out was 
used on the sending router causing the estimate to change by one more than its current 
estimate if it timed out. If a broadcast protocol is used to send the packets, more network 
congestion will result, but the packets are more likely to arrive at their destinations.  
 
To obtain the time estimate for this implementation, the training packets summed the 
amount of time taken across each link as they traveled through the network. Other 
possible cost estimation schemes would include time stamping or queuing theory. Once a 
training packet arrives, the destination router sends back an acknowledgement packet 
containing the actual cost estimate (this may also be done using broadcast to make sure it 
arrives). When the sending router gets acknowledgement packet back, it updates the 
current estimate through the corresponding port using a basic neural network learning 
algorithm (see [5]). 
  
The process for the entire neural network routed communication network basically 
functions like this: 
 

1. Each router is initialized with random estimates 
2. Each router sends out training packets to every other router through every port 

and updates its current estimate when the acknowledgement packets return. 
3. Each router repeats step 2 until all current estimates are the same as the estimates 

in the acknowledgement packets. 
4. Each router can repeat steps 2 and 3 at regular intervals to keep the paths current. 

 
There is one tunable parameter involved in the training cycle called the learning rate. For 
the main experiments in this paper, the learning rate was set to 1. The learning rate affects 
how fast the network corrects its estimates and should never be more than 1 (for example, 
1 means change the estimate to be exactly what the ack packet reports and .5 means 
change the current estimate by only half the difference between the current and the ack 
estimate). A network will find the paths fastest with a learning rate of 1, assuming the ack 
estimates are accurate. If the ack estimates are less accurate, or if it is desirable to have 
the network “adapt slowly” to changing conditions, a lower learning rate should be used. 
 
The time complexity for training is basically the number of iterations to train times the 
number of routers in the network times the average number of ports on each router. The 
number of training iterations is generally considered to be constant (as seen below, a 
fairly low one) and the average number of ports on a router is also—on average—a small 



constant. Therefore, assuming the number of iterations is not related to the number of 
routers (which has yet to be tested) the time complexity is basically linear in the number 
of nodes in the network, which is simpler than Dijkstra’s algorithm’s quadratic time for 
solving the same problem. 
 
 
Experiment 
 
The techniques explained above were applied to the 9-node mesh network shown below: 
 

 
Each vertex in the above graph represents a neural network router and the labels on the 
edges represent the costs between each connected router. 
 
After running the routers on the above network, congestion was simulating by resetting 
the following links to the following values, and the network was run again (Tseng did the 
same thing in [2]): 
 

• node 2 to node 5 changes from 15 to 20, 
• node 4 to node 5 changes from 2 to 21 
• node 6 to node 5 changes from 1.2 to 10  
• node 8 to node 5 changes from 2.1 to 11  

 
 
Results 
 
Using a learning rate of 1, every router learned the optimal paths to every other router in 
the above network after 6 iterations of training. After “congestion” was added, the 
network learned the new optimal paths after 4 more iterations. Tseng used a learning rate 
of .5 and reported optimal paths after 9 iterations and adapted to congestion after another 
11. 
 
 



Conclusion and Future Work 
 
The above results support the hypothesis that the above distributed neural network 
routing system can learn paths through a network as well as current traditional methods 
(i.e. OSPF). If the number of iterations needed to learn the paths remains relatively 
constant for larger communication networks, this new routing method will yield better 
time complexity than strictly quadratic for networks greater than 18 nodes. This estimate 
ignores the constants on common quadratic methods (like Dijkstra’s algorithm), which 
could mean this algorithm is better on even smaller networks. 
 
Future work can be done in two areas, the first being validation. This would include 
running the same experiment on several different topologies each with several different 
configurations. The next step would be to test it with a discrete time simulator, and 
finally on real networks. One of the most important observations would be to determine if 
the number of iterations needed to learn the networks increases with larger networks (or 
with networks with a higher average number of ports per router). If these numbers stay 
relatively constant, the complexity will remain linear. 
 
Another area for future work would be to extend the network’s current capabilities to 
more interesting routing problems like multi-criterion path selection, especially if the 
time complexity reduction holds. Success in this area would add to the constantly 
growing number of instances where machine learning simplifies many of the more 
difficult problems applying more traditional algorithms to important problems. 
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