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ABSTRACT

JUMPSTARTING PHYLOGENETIC SEARCHES

Jesse L. Mecham
Department of Computer Science

Master of Science

Phylogenetic analysis is a central tool in studies of comparative genomics.
When a new region of DNA is isolated and sequenced, researchers are often forced to
throw away months of computation on an existing phylogeny of homologous sequences
in order to incorporate this new sequence. The previously constructed trees are often
discarded, and the researcher begins the search again from scratch. The jumpstarting
algorithm uses trees from the prior search as a starting point for a new phylogenetic
search. This technique drastically decreases search time for large data sets. This kind

of analysis is necessary as researchers analyze tree of life size data sets.

0.1 Thesis Statement

This thesis demonstrates that a search utilizing the jumpstarting algorithm will

return better trees in less time than a search that chooses not to use jumpstarting.
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Chapter 1

Introduction

Phylogenetic analysis has become an integral part of many biological research
programs. These include such diverse areas as human epidemiology [1, 18], viral
transmission [2], biogeography, and systematics. With the advent of high throughput
sequencing, an increasingly large volume of sequence data are becoming available.
Scientists should be able to take advantage of these data and also of the research
that others have performed. For example, when a new virus is detected, it should
be possible to estimate a phylogenetic tree (an evolutionary history) containing all

related viruses and the unknown variant in order to answer questions such as:

e Where did this virus come from?
e When did this virus arrive in the human population?

e Which related species might have antibodies appropriate for testing in develop-

ing new treatments?

e Has this virus been genetically modified through natural or human induced

recombinant technology?

e How is this virus evolving and what genetic changes occurred to allow it to

successfully enter the human population?

Unfortunately, this kind of phylogenetic search is currently computationally

infeasible. The time it takes to perform a complete search using maximum likelihood



exceeds several months with even a small number of sequences (on the order of 100-
200). In the case of the SARS epidemic, and others like it, key information must be
available in days or at most weeks in order for appropriate action to be taken. Much
of the problem comes from the culture and software design for most phylogenetic
software packages [17, 8, 7]. These packages require the user to start a search from
scratch every time a new sequence is added to the search (this is exactly the situation
when a new antigen is observed). The software packages also do not allow users to
share partial trees that could speed up the phylogenetic search process. This creates
a culture where investigators see little or no benefit to collaborate in phylogenetic
research.

What if it were possible to utilize trees from previous phylogenetic searches
as a starting point for future searches? The jumpstarting algorithm presented in
this thesis allows researchers to use previously generated phylogenetic trees to create
better start tree for future searches. By utilizing jumpstarting, it is possible to find
better trees in less time than conducting a naive phylogenetic search.

Although jumpstarting may seem like an intuitive concept, there are many
factors that must be considered if prior trees are actually going to be of benefit.
Through investigating the influence of these factors, researchers can make correct
decisions when utilizing jumpstarting to speed up the generation of phylogenetic

trees. Such factors include:

e The number of taxa inserted into a new search. Researchers will often sequence
a new specimen and want to incorporate this sequence data into an existing
search. We have found that when a small number of sequences are inserted, the
trees from prior searches are of great benefit to the search with new sequences.
When too many sequences are added, however, the effectiveness of jumpstarting

diminishes.

e Alignment of previous searches. When new sequences are added to a search, a
new alignment must normally be performed to incorporate the new data. The

alignment used to generate prior trees also influences the impact these prior



trees will have on the new search. Even when a poor alignment is used to
generate prior trees, jumpstarting is able to gain some benefit from using these

trees.

e Type of consensus used when merging trees from previous searches. When
several overlapping trees are used from prior searches, it may be necessary to
merge the trees to create a jumpstart tree with maximal overlap with new
search sequences. Many trees may be available from prior searches with the
same score. The way in which consensus is performed can greatly impact the

efficacy of jumpstarting.

This thesis will demonstrate that through correct usage of jumpstarting, re-
searchers can significantly reduce the time required to conduct a phylogenetic search

without compromising the quality of the trees returned.

1.0.1 Phylogenetics

The branching pattern of ancestor/descendant relationships among species or
their parts (e.g., genes) is a phylogeny. Researchers attempt to estimate these his-
torical relationships by examining character evolution using a tree — a mathematical
structure used to model the actual evolutionary history of species or their parts [6].
These inferred trees (historical branching relationships) can be represented as clado-
grams, where branch lengths are arbitrary and only the branching order is significant,
or as phylograms, where the branch lengths are proportional to the amount of evolu-
tionary change along the branch.

Phylogenies were historically used to classify organisms into natural evolution-
ary groups based on these ancestor/descendant relationships. Indeed, great effort is
currently being spent on estimating the Tree of Life to quantify the biodiversity of
our planet [3]. However, phylogenies have also spread in use as the utility of the
evolutionary framework for numerous other disciplines becomes increasingly obvious
[13]. For example, phylogenies are now being extensively used in the biomedical sci-

ences including developmental biology, genomic biology, infectious disease, virology,



and human genetics.

Phylogenies have become essential tools in the study of the molecular epi-
demiology of disease agents. A prime example of the troubles encountered when the
phylogenetic approach is ignored comes from the outbreak of the West Nile Virus
in New York City. This virus was responsible for multiple deaths in New York, yet
the Centers for Disease Control and Prevention (CDC) initially misdiagnosed the
causative agent as St. Louis encephalitis due to their lack of an appropriate phy-
logenetic comparison [4]. The study of origins, spread, and diversity of pathogens
are clearly evolutionary questions. Only after the serological evidence was coupled
with strong phylogenetic evidence was the West Nile Virus correctly identified as the
etiological agent responsible for the encephalitis outbreak in New York [9].

Phylogenetic estimation is accomplished by optimizing character change rel-
ative to some criterion over a tree. The tree for which the character data show
the best optimization is the preferred tree. Two of the principle optimization cri-
teria used by researchers are maximum parsimony and maximum likelihood. The
parsimony criterion attempts to minimize the number of changes among a tree for
shared-derived characters, while likelihood attempts to maximize the probability of
change for all characters relative to some model of evolution. Each criterion has its
own strengths and weaknesses. For example, maximum parsimony can incorporate
insertion/deletion (indel) events and have asymmetric changes (e.g., a change from
character A to character B is not the same as a change from character B to charac-
ter A), whereas current implementations of maximum likelihood cannot accommodate
these biological realities. Likewise, maximum likelihood can account for heterogeneity
in evolutionary rates and multiple changes at the same character position, whereas
maximum parsimony cannot. Thus there is, often times heated, discussion about
appropriate methods to use to estimate phylogenetic relationships.

Another reason there is such debate about phylogenetic methods is that their
performance varies depending upon the type of data used, the number of sequences in-
volved, and the depth of the evolutionary relationships to be inferred. Exact searches,

those that explore every possible tree topology for a given optimality criterion, are



only possible for a very small number of taxa (on the order of 20-30). This limited
search is due to the rapidly increasing number of possible trees with a modest increase
of taxa [5]. The total number of (unrooted, strictly bifurcating) trees for T taxa is

shown in Equation 1.1.

T

B(T) = [ (2i — 5) (1.1)

i=3
So, for example, with only 50 sequences, there are 32107 possible trees. For
the tree of life, there are estimated to be well over 10 million species, yet for 10 million

sequences there are 51058667340

possible trees. Therefore, the phylogeny problem is
a particularly tough one that is well suited for distributed technology (because one
performs the same calculations over different, independent, tree topologies) such as
web based systems that utilize distributed resources.

Phylogenetics has become an active field in and of itself [15]. It is an extremely
exciting field where talents in mathematics, computer science, and biology can be
brought together to work on the problem of inferring historical relationships. A

survey of the recent literature in many of the biomedical fields will attest to the ever

increasing applicability of phylogenetic analysis.

1.0.2 Related Work

There are a wide variety of programs available to researchers to conduct phy-
logenetic searches. There is no 'best’ phylogenetic program out there currently. Each
of the programs have their strengths and weaknesses. Each program implements a
different strategy for finding the best phylogenetic trees based upon the investigator’s
criteria. Researchers often have their personal favorites based upon past experience
and size and properties of the dataset they are investigating. The advantage pre-
sented by jumpstarting is the fact that it should be able to work in conjunction with
just about every phylogenetic search program available. This is due to the fact that
jumpstarting is not truly a search algorithm, but an algorithm designed as an add-
on to enhance the performance of current phylogenetic search programs. Below are

descriptions of the most popular phylogenetic programs.



PAUP*

Phylogenetic analysis using parsimony (PAUP*) has established itself as the
industry standard over the course of the past fifteen years. It is a commercial product
currently in version 4.0 [17]. While it does not handle large datasets as well as some
of the newer competitors, researchers continue to use it because it is well understood
and recognized. Research is continually being done to find ways to extend PAUP’s

functionality to handle larger datasets (see DCM3 below).

PSODA

An open-source phylogenetic program designed to include all of the basic func-
tionality of PAUP* [16]. While PSODA is currently able to perform the basic func-
tions needed in phylogenetic searching, it does not currently include many of the
extensions that make PAUP* desirable. The major advantage of PSODA is that it
is an open source product that performs as well as the commercial product PAUP*.
While past open source phylogenetic projects (PHYLIP, Mesquite, etc.) have ap-
pealed to the community as a free alternative, their poor performance has turned
many serious researchers away to commercial products. It is hoped that as PSODA
gains greater recognition, the open source community will embrace it and add the ex-

tended functionality necessary to compete with the other other commercial products.

PHYLIP

The phylogeny inference package (PHYLIP) is a collection of open source
C packages that has been in distribution since 1980 [7]. The most recent version
(3.65) was released in August of 2005. PHYLIP performs most of the basics types of
phylogenetic searches and is widely used due to its free, open source nature. However,
its performance is considerably lower than that of the other programs described in
this thesis. Furthermore, as the size of sequence datasets increases, the gap between

PHYLIP and these other programs is increasing.



TNT

Tree analysis using new technology (TNT) is a relatively new commercial
program that utilizes a combination of simulated annealing (along with the parsimony
ratchet), divide-and-conquer, and genetic algorithms to reconstruct claudiograms [10,
8]. Not much has been published about the inner workings of the program, but it has
already created a quite a stir within the community due to its ability to process large

data sets. It is considered by some to be the best performer currently on the market.

DCM

This program has gained some attention in recent years as a way to analyze
larger datasets. It was designed to work on datasets in the range of thousands of
sequences and has been shown to be effective up to almost fourteen-thousand se-
quences [14]. Disk Covering Methods (DCM) is essentially a divide-and-conqueror
strategy used for claudiogram reconstruction. While there are a variety of flavors of
DCM (DCM1, DCM2, and the most recent Parallel-Recursive-Iterative DCM3), they

all center around the following four phases:
1. Dividing or decomposing the dataset
2. Solving the smaller subproblems
3. Combining the subproblems
4. Refining the resulting tree

The difference between the versions of DCM have to do with the way in which
the different subproblems are broken down and joined back together. DCM is not a
search program in and of itself, but relies on another program underneath (PAUP*,

TNT, etc.) to work on the localized subproblems.

1.0.3 Jumpstarting

Since the phylogenetic search space is so large, it is extremely important to cre-

ate search heuristics that are as efficient as possible. The jumpstarting algorithm was



developed to take advantage of previous searches in order to speed up new phyloge-
netic computations. Additionally, emphasis was placed on recognizing the difficulties
researchers face when conducting phylogenetic research and trying to minimize work
lost. A common example of work lost occurs when a phylogenetic search is begun on
a collection of organisms (fleas for example), yet must be restarted from scratch when
sequence data from a new organism is made available. By allowing the researcher
to continue searching from the point they left of originally, months of computational
time already invested can be utilized.

The Jumpstarting algorithm consists of four main parts:

1. Selecting from available trees those that might contribute to a new search.
2. Conducting a phylogenetic search.

3. Storing the new trees in a way that they may be accessed in future phylogenetic

searches.

While a simple algorithm at its core, it allows for flexibility in they ways it
collects tree data and combines it into new starting trees. There are various ways to

implement jumpstarting, one possible algorithmic implementation is given below:

1. Let T = {z | = € { taxa involved in the new search }}.

2. Query the data base for prior searches with the set of taxa S; where at least
one of the taxa in the prior search is the same as the new search ( z € T and

ZL’GSZ)

3. For each of these prior searches on taxa .5;, determine the intersection I; =

TNS;={z|xz¢Tand z € S;}.

4. Use the Newick parenthetical notation for the best tree from this maximal

intersection as the base tree for the new search.

5. Add taxa x € T where x € S; to all trees within ;.



6. Begin a normal search with the trees from N;.

Figure 1.1 provides a concrete example of the jumpstart algorithm. In this
example, User A on Peer 1 has performed a search resulting in Tree X version 1.1.

The following steps are included in the algorithm:

1. User B on Peer 2 prepares a set of taxa that will be used in a phylogenetic
search and creates the data structure for Tree Y, Versionl.1. A query is sent to
peer machines to determine if searches have already been performed with some

of these taxa.

2. Peer 1 has Tree X Version 1.1 which matches the criteria in the query. This

tree is returned to Peer 2.

3. Peer 2 uses Tree X Version 1.1 combined with other local taxa to jumpstart a

phylogenetic search.

4. After expending significant computational resources, User B generates Tree Y
Version 1.2 which refines the relationships between taxa in Tree X as well as

Tree Y. This version of the tree is entered into the database.

5. User A has a reference to Tree Y since a subtree of Tree X was used as a
jumpstart point for Tree Y. When Tree Y Version 1.2 is generated Peer 1 can

send a query for derivative trees of Tree X Version 1.1.

6. Peer 2 will return Tree Y Version 1.2. User 2 may decide that all of the rela-
tionships contained in Tree Y Version 1.2 should not be made public. In this
case, the subtree containing only the nodes originally found in Tree X would be

returned.

7. Peer 1 receives the refined relationships and can create Tree X version 1.2. This

tree can be used for future searches.

In this example interaction, both User A and User B have benefited from the

collaboration. The tree returned from Peer 2 can be used, or discarded depending on



the value that User A places on the results. User B has been able to cut months off

of his search time because of the initial jumpstart tree he/she was able to derive from

Tree X Version 1.1.

User B
Tree Y \)

Version 1.1

User A
Tree X 1) Query for trees including Taxa from
Version 1.1 Tree Y
2)Respond with Tree X containing a . o
subtree that includes taxa from tree Y. 3) The relat1onsh.1ps in Tree X are used
to refine the starting point for the search
on tree Y

n

4) Search on Tree Y yields Tree Y V1.2

5) Query for derivative Trees of Tree X
V1.1
N
M

<
6) Return Tree Y V1.2

7) Use new relationships to refine Tree X
Version 1.2 and as a starting point for
future searches

Figure 1.1: Example Jumpstart Interaction
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Chapter 2

Methods

Typical phylogenetic studies involve the collection of data, sequence alignment
and phylogenetic analysis. Jumpstarting a phylogenetic analysis can improve the
results in multiple stages of this process. When a new sequence is added to a data set,
a new alignment must normally be computed, and the old trees that were generated
in phylogenetic analysis are not normally used in further analysis. Both alignment
and phylogenetic analysis are time-consuming processes (some analyses have been
known to take months). When a researcher adds a sequence to the analysis, all the
previous time spent in computation is essentially thrown away because the researcher
must start over again. This drastically slows the scientific process. Jumpstarting

eliminates the wasted time by taking advantage of previous analyses.

2.0.4 Experimental_Setup

In order to analyse the effectiveness of the jumpstarting algorithm, an exper-
iment was constructed an to simulate real phylogenetic analysis. A database was
constructed to hold the phylogenetic trees returned from a search and to make them

accessible to future queries. Four representative data sets were thoroughly analysed:

e Zilla: a 500 taxa dataset 759 nucleotide bases in length.
e Avian: a 921 taxa dataset 1120 nucleotide bases in length.
e Three Genes: a 567 taxa dataset 2153 nucleotide bases in length.

e HIV: a 397 taxa dataset 8583 nucleotide bases in length.

11



After selecting the data sets to run the experiment, the database was populated

based on the following algorithm:

1. For each dataset D, iginq consisting of ¢ taxa, remove n random taxa to create

a new dataset Dg,q, consisting of (t-n) taxa.

2. Run PAUP* [17] on each Dg,,q; datasets for specified length of time, resulting

in a set Sg,qau of trees.

3. Insert Sy, into the database along with all relevant information about how

the trees were created.

4. Taking the original n taxa that were removed in step (A) and connect them to

the base of each tree in Symall to create a new set of trees S,riginal.

5. Beginning a parsimony search by using the trees in S,riginal as a starting point

for the search.

At this point, the database has been populated and may now be queried by
the jumpstarting algorithm. This is where the jumpstarting part of the experiment

begins by:

1. Taking the original n taxa that were removed in step (A) and connecting them

to the base of each tree in Sy to create a new set of trees Soriginai-

2. Beginning a PAUP* [17] TBR parsimony search by using the trees in Spiginal

as a starting point for the search.

The above mentioned algorithm was designed in order to simulate scenarios
where jumpstarting would be beneficial to a researcher. Some possible scenarios might
include a researcher who has been conducting a ten month phylogenetic analysis on
various birds, but has just finished sequencing n new sequences that she wishes to
insert into her avian dataset. Another scenario might be a researcher who has just
sequenced n new HIV isolates and wants to know how these isolates are related

to those already researched by colleagues at another institution. In each of these

12



scenarios the researcher is concerned with inserting a few new taxa into trees already
constructed.

As the number of new taxa is increased, the jumpstarting algorithm should
become less effective. It is important to know when jumpstarting should be aban-
doned and the researcher should just start a new full search. In order to answer this
question, the jumpstarting algorithm will be run with n = 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 50, 60, 70, 80, 90, 100 for all datasets and n = 200, 300, 400 additionally for
the Avian and Zilla datasets (due to the fact that they contain a larger number of
taxa). For our experiments, the Ratchet algorithm [12] was used in step (2) above
in order to create the S,,. set of trees. The ratchet will be allowed to run between
30 and 200 iterations and will be set to weight 30% of the matrix characters. This
simulate’s trees that would be present in a researcher’s database after searching on a
dataset for a significant amount of time.

In order to analyze the impact of alignment on jumpstarting, gaps will be
removed from sequences in the dataset Dgyiginai, and the sequences will be realigned
with CLUSTALW using the fast option [19]. This option creates a poorer alignment
(which ultimately results in poorer trees). This experiment was performed to an-
alyze jumpstarting’s ability to overcome noise introduced by poor alignment. This
is important in situations where the researcher may wish to incorporate trees into a
jumpstarting search from an outside source, but may not be confident in the alignment
used by outside researchers.

In order to analyse the impact of alignment on jumpstarting, gaps were re-
moved from sequences in the data set Dgyigina;, and the sequences were realigned
with CLUSTALW using the ’fast’ option. This option creates a poorer alignment
(which ultimately results in poorer trees). This experiment was performed to analyse
the jumpstarting’s ability to overcome noise introduced by poor alignment. This is
important in situations where the researcher may wish to incorporate trees into a
jumpstarting search from an outside source, but may not be confident in the align-

ment used by outside researchers.
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Chapter 3

Results

While the primary goal of jumpstarting is to return lower scoring trees in less
time, it is not sufficient to simply look at tree score over time. A variety of factors
must be analyzed and studied when analyzing the effectivness of jumpstarting. The
quality of the trees returned and the factors that directly influence the effectivness
of jumpstarting must be scrutinized in order to gain a better understanding of the

algorithm. The results are therfore divided into subsections as follows.

3.0.5 Tree Score vs. Time

In order to quantify the effectiveness of jumpstarting searches, we analysed
the time to generate better tree using jumpstarting and compared these results with
the time required to reach a better tree when starting from scratch. Better trees have
shorter length values. In all the data sets analysed, jumpstarting TBR found better
trees in less time than the equivalent regular TBR search. However, the time at which
that score was found and the overall final score was found to be heavily dependent

on a variety of factors:

e the number of taxa inserted
e the alignment quality

e the total number of taxa.

One of the greatest advantages of jumpstarting is its ability to find more

optimal trees in substantially less time than a regular TBR search. In order to measure

15



this difference, execution times were recorded for each tree found in the experiments
described in Section 3.1. A ’scratch’ TBR parsimony search was also performed, and
the time at which all trees were discovered was recorded. By comparing the results of
each experimental jumpstart run with those obtained from the scratch experiment, we
are able to analyse the performance benefits of jumpstarting over regular phylogenetic
searches. All scratch data sets were allowed to run for a minimum of 24 hours beyond
the point they found their lowest scoring tree. In all cases, the jumpstart data sets
were run for less time than the corresponding scratch data set. All experiments
were run separately on a 700 MHz SGI MIPS R16000 processor using 64 GB shared
memory. The results of this analysis are shown in Figure 3.1. Each graph shows the
results recorded from one data set. In order to make the plots more readable, results
were grouped by the number of new taxa inserted (1-5, 5-10, 10-50, etc.). Fach data
point was then averaged with all other members of its group, and the results are
plotted on the appropriate graph. The result of each respective ’scratch’ search is
also shown for comparison.

In experiments where one hundred or fewer taxa were inserted, jumpstarting
returned significantly lower tree scores within the first 120 seconds than a regular TBR
search was able to find over the course of the entire experiment. When ten or fewer
taxa were inserted into the search, jumpstarting found a better tree in sixty seconds,
than what a TBR scratch found during the entire experiment. One prime example of
this is seen in the Three Genes experiment, where jumpstarting with the addition of
1-5 taxa returned a score of 44168 within sixty seconds, while the best tree using the
TBR scratch method after 65 hours was returned a score of only 44179 (Figure 3.1).
However, it should be noted that the ability of jumpstarting to quickly return low-
scoring trees is inversely related to the number of new taxa inserted into the search.
In other words, as the number of new taxa incorporated into a single jumpstart search
increases, the effectiveness of jumpstarting will decrease. However, it is important to
note that this result suggests that jumpstarting does, in fact, reduce the amount of
time required to conduct a phylogenetic search and the final trees returned are better

than those found through naive searching.

16
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Figure 3.1: Each graph represents a different data set. All data series are grouped by
the number of taxa inserted into the jumpstart search (1-5 taxa inserted, 5-10 taxa
inserted, 10-50 taxa inserted, etc. as noted in legend of each graph). Additionally, a
TBR search where no jumpstarting was used (scratch) is shown in each of the graphs.
Note that for each data set, when 50 or fewer taxa were inserted, jumpstarting found
better trees in significantly less time. However, it must be noted that as the number
of taxa inserted increases, the effectiveness of jumpstarting decreases.
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In order to understand why jumpstarting reaches its best tree score so quickly,
it is helpful to observe the trends seen in the initial trees it returns. Below are the
PAUP* tree scores from the first sixty seconds of a jumpstart search. The scores are
grouped by the number of taxa added to the jumpstart tree (Figure 3.2). While an
observable trend shows the initial jumpstart tree score increasing with the number of
new taxa incorporated, it should be noted that jumpstarting consistently begins its
search with more optimal trees in each case that has less than 50 taxa incorporated
into the new search. This gives us a feel for how many new taxa a researcher can

insert into a jumpstarting search and still see instant measurable benefits.
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Figure 3.2: Each graph represents a different data set. The horizontal line in each
data set represents the starting score of a TBR search, where no jumpstarting was
used. The other line in each graph represents the average starting score (y-axis) for
each jumpstarting experiment, grouped by number of taxa inserted into the jumpstart
search (x-axis). Note the trend that as the number of taxa inserted increases, the
average starting score increases as well.
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It is possible to take these results one step further and compare the speed-
up jumpstarting offers over a regular TBR search by measuring the time it takes
for a TBR to find the worst/initial jumpstarting tree in a corresponding experiment
(Figure 3.3). By observing the graph, it becomes apparent that as the number of
taxa incorporated into the jumpstart search increases, the overall speed-up afforded
by jumpstarting decreases. When five taxa were inserted, it took regular TBR over
2.5 hours to find the same tree that jumpstarting found in 60 seconds. When more

than 100 taxa were inserted, however, jumpstarting returned worse starting trees than

a regular TBR search did.

3.0.6 Tree Quality

Although a particular algorithm may be efficient at finding a sub-optimal tree
quickly, the researcher is more concerned about the final tree score than the time it
took to reach sub-optimal trees. In order to analyse the quality of trees found by the
jumpstarting algorithm, we compared the scores of the best tree found by using the
jumpstarting algorithm with the best tree scores found by a TBR search from scratch
(Figure 3.3).

There is a general trend observed that the final tree score is inversely related to
the number of taxa removed. As the number of taxa inserted into a jumpstart search
increases, the average score of the best tree found during a jumpstarted phylogenetic
search decreases. In all of our experiments, if fewer than thirty taxa were inserted
into the search, jumpstarting found better trees than a regular TBR search.

There was a point at which the jumpstart search began to return worse trees
than a regular TBR search, but it only occurred after a significant number of taxa
had been added to the jumpstart search. The first occurrence of diminishing results
occurred when the number of taxa inserted was greater than 6% of the total taxa
included in the search (Zilla data set), while the average over all data sets was 11%
of the total taxa included in the search. These results again suggest if the researcher
has an understanding about the reasonable limitations imposed by jumpstarting, a

jumpstarting search can return at least equally good trees in significantly less time.
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Figure 3.3: The above chart shows the average searching time it took TBR to find
a tree with the same score as the initial search tree returned from the jumpstarting
algorithm. The above chart shows the scores of the Zilla data set. The plotted
coordinates represent the time (x-axis) it took for a regular TBR search to achieve
the average score of the initial tree for each experiment grouped by the number of
taxa inserted (y-axis). Since the regular TBR search never found a tree equal to the
first jumpstarting tree when less than five taxa were inserted, only data points where
five or more taxa were inserted are shown. Notice that as the number of taxa inserted

increases, the time required for a regular TBR search to find an equally good tree
decreases.
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Figure 3.4: Each graph represents a different data set. The horizontal line in each
data set represents the final tree score of a TBR search where no jumpstarting was
used. The other line in each graph represents the average final score (y-axis) for
each jumpstarting experiment, grouped by number of taxa inserted into the jump-
start search (x-axis). Note the trend that as the number of taxa inserted increases,
the average starting score increases as well. It is also important to observe that
jumpstarting always finds better trees, if twenty or fewer taxa are inserted.
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3.0.7 Alignment Quality

When analysing the effects of alignment on jumpstarting, the decision was
made to test trees constructed from a sub-optimal alignments in order to asses the
ability of the algorithm to eliminate noise introduced by poor alignments. Each of
the experiments was analysed based on the same metrics in other experiments: time

to best tree and tree score (Figures 3.5-3.6).
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Figure 3.5: The horizontal line represents the final tree score of a PAUP* search where
no jumpstarting was used. All final PAUP* searches (scratch, good and poor) were
done using the same final alignment. The series labelled poor represents experiments
where trees fed to the jumpstarting algorithm were created from a poor alignment.
The poor alignment was created by using the fast option in CLUSTALW. The series
labelled good represents experiments where trees fed to the jumpstart algorithm were
created from a good alignment (using the slow option in CLUSTALW). Note that by
using jumpstart trees that were created using a poor alignment, the effectiveness of
the jumpstarting algorithm decreased, yet it still outperformed a TBR PAUP* search
from scratch.

HIV was chosen as the example in this paper since it had the longest sequences
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Figure 3.6: All data series are grouped by the number of taxa inserted into the
jumpstart search (1-5 taxa inserted, 5-10 taxa inserted, 10-50 taxa inserted, etc. as
noted in legend of each graph). Additionally, a PAUP search where no jumpstarting
was used (original) is shown in each of the graphs. Note that for each data set, when
50 or fewer taxa were inserted, jumpstarting found better trees in less time. However,
it must be noted that as the number of taxa inserted increases, the effectiveness of
jumpstarting decreases.
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and was most sensitive to alignment errors. In order to compare the relative change
in jumpstarting performance, the results of the poorly aligned dataset were compared
with the results of a good alignment (Figure 3.5). While the results show that jump-
starting with poorly aligned trees outperformed a ’scratch’ search, the jumpstarting
performance was decreased by approximately 30% when compared with trees con-
structed from good alignments. While there is a definite decrease in jumpstarting
performance when a poor alignment is used to create the dataset, jumpstarting shows
that it still has the robustness to outperform a regular TBR search even when the

data used to feed it is not correctly aligned.

3.0.8 Consensus Algorithms

Jumpstarting is advantageous when adding sequences to an existing analysis.
However, this is not the only use for jumpstarting. More typically, a researcher may
request data from the database and wish to begin computation by taking advantage
of these data. A user can request all trees that contain certain taxa or sequences from
the database. However, these trees may also contain extraneous taxa. One approach
is to simply strip out the extraneous samples and use the resulting trees as a starting
point. A consensus tree could also be used.

Figure 3.7 demonstrates the different jumpstarting possibilities available. A
researcher may choose to start computation based on one of the most optimal (Small-
est) trees returned from the query. Optionally, a consensus tree may be created and
used for jumpstarting the new search (Strict, 50%). Preliminary studies show that
creating a majority rule consensus tree (50%) from the collection of most optimal
trees returned by the jumpstart system seems to be the best option. Figure 3.7 shows
that this method found the most optimal tree in 17 minutes, whereas the other choices
took at least 57 hours. Increases in performance such as this are vital for advances and

to apply the power of the phylogenetic approaches to studies in biomedical research.
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Figure 3.7: The graph illustrates the effect of various schemes for incorporating trees
into a single jumpstarting set. Strict consensus tends to eliminate too much of the
inherent structure of the jumpstarting tree, giving diminished results. However, using
50% consensus tends to show the most promising results in our experiments.
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Chapter 4

Conclusion

Jumpstarting is effective at improving the ability of researchers to quickly
generate phylogenies. When a new epidemic strikes, it is often important to determine
the relationship between the current organism and others that have been successfully
treated previously. This process can take a prohibitively long period of time with
current algorithms. The jumpstarting algorithm can generate superior phylogenetic
relationships much more quickly than existing algorithms. These relationships can
be used to make informed decisions in epidemiology and other areas.

Through the course of this experiment, there were a variety of important

factors that became apparent. These factors concist of:

e The number of taxa inserted into a new search. When an average of 30 or
fewer taxa is added to a search, jumpstarting significantly outperforms searches
started from scratch. The exact number is dependent on the data set and future

research will define ways to define this threshold.

e Alignment of previous searches. While there is a decrease in jumpstarting per-
formance when poor alignments are used for prior trees, jumpstarting still out-
performs searches started from scratch. Future work will investigate which trees

to incorporate into a search based on alignment differences.

e Type of consensus used when merging trees from previous searches. The 50%
consensus shows the greatest improvement out of all consensus methods investi-
gated. Future research will investigate additional consensus methods and their

effect on jumpstarting.
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Altering any one of these factors can drastically affect the jumpstarting’s abil-
ity to return optimal trees in minimal time. However, even in a world of imperfect
data, jumpstarting can be a powerful tool used by researchers to decrease the time
required to conduct phylogenetic searches and improve the optimality of the trees
they produce.

The results presented in this thesis have show strong evidence that jumpstart-
ing is an effective algorithm for reducing search times while improving tree quality
in phylogenetic analysis. It can be combined with various search algorithms to deal
with important medical problems. Future work will investigate ways of mining the
database and combining existing trees to provide the best starting point for future
searches. It is hoped that these results will encourage researchers to begin collecting
the trees that they have been discarding thus far, and help in developing a community
which not only shares proteomic and nucleotide data, but also feels encouraged to

share evolutionary data to facilitate the efforts of their colleagues.
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Appendix A

Initial Results

Included below is an initial result obtained while developing the jumpstarting

algorithm.

A.1 Two Thousand Dataset

The following result was one of the first experiments run using the jumpstart-
ing algorithm. Figure A.1 demonstrates that while both jumpstarting and regular
phylogenetic searches reach the same score eventually, the jumpstarting algorithm
finds the best tree score in a matter of minutes, while the non-jumpstarted search

takes almost a day.
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Figure A.1: The above graph shows the score of the best tree found while conducting a
PAUP phylogenetic search with (top line) and without (bottom line) the jumpstarting
algorithm. Both experiments were run on a set of two thousand unaligned sequences
and were run on the same computer.
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Appendix B

Implementation

The JumpstartSearch program was designed and written in order to imple-
ment and test the jumpstart algorithm. It was writen in modular PERL and utilizes
BioPERL modules. The current implementation is configured to run either from the
command line or through a web interface. All trees used in the jumpstarting algo-
rithm are pulled from a PostgreSQL datbase named TreeBank. A CVS repository was
created at the Computational Sciences Laboratory (CSL) at Brigham Young Univer-
sity which holds the JumpstartSearch program. The following sections describe the
PERL program and the TreeBank database.

B.1 JumpstartSearch

The JumpstartSearch program consists of a main control program (jumpstart-
Search.pl) which the user can call from the command line or place in a web-accessable
directory and interface as cgi script. There are a collection of essential modules and
files which jumpstartSearch.pl calls to accomplish various parts of the algorithm as
well as some helper modules included in the package. The essential modules and files

include the following:

e Datbaselnterface.pm
e SequenceControler.pm
e TreeControler.pm

e TreeBankControler.pm
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SettingsControler.pm

Ratchet.pm

settings.txt

Optional modules are as follows:

Emaillnterface.pm

populateDB.pl

uploadtree.cgi

As part of the instalation process, the user must also specify a collection of
settings found in settings.txt in order to dictate properties of the search program.
Further explanation can be found in the PERLDOC documentation located in the
CVS repository as noted above.

B.2 TreeBank Schema

In order to store the trees used in the jumpstarting program, the TreeBank
database was designed. It drew from many of the concepts presented by Nakhleh [11].
The schema given here was designed for PostgreSQL and can be found in the dis-

tributed JumpstartSearch package.

-—#COMMENT Dropping tables

DROP TABLE sequence;
DROP TABLE score;
DROP TABLE scoretype;
DROP TABLE treeends;
DROP TABLE tree;
DROP TABLE spanning;
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DROP TABLE edge;
DROP TABLE region;

DROP TABLE users;
DROP TABLE groups;
DROP TABLE usr_grp_map;

DROP SEQUENCE tree_counter;

DROP SEQUENCE sequence_counter;

-—#COMMENT This is the sequence generator so we can auto-increment in Postgres
CREATE SEQUENCE tree_counter START 1;
CREATE SEQUENCE sequence_counter START 1;

--#COMMENT Creating tables

CREATE TABLE users (

id BIGINT NOT NULL PRIMARY KEY,
name VARCHAR(128),

location VARCHAR(128),

phone VARCHAR (30)

)

CREATE TABLE groups (
id BIGINT NOT NULL PRIMARY KEY,
name VARCHAR (128)

);

CREATE TABLE usr_grp_map (
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id BIGINT references users(id),

groupid BIGINT references groups(id)
)

CREATE TABLE tree (

id BIGINT NOT NULL PRIMARY KEY,

- userid BIGINT references users(id),
- groupid BIGINT references groups(id),
description VARCHAR (32000) ,

newick BYTEA

)

CREATE TABLE sequence (

id BIGINT NOT NULL PRIMARY KEY,

- userid BIGINT references users(id),
- groupid BIGINT references groups(id),
treeid BIGINT references tree(id),

name VARCHAR (512),

hash VARCHAR (128) ,

sequence BYTEA,

genebankid VARCHAR (128)

)

CREATE TABLE region (

id BIGINT NOT NULL PRIMARY KEY,
seqid BIGINT references sequence(id),
startIndex BIGINT,

endIndex BIGINT,

coding SMALLINT,

lock SMALLINT,
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characters VARCHAR (32600)

)

CREATE TABLE edge (

id
treeid
vl

v2
weight
steering

)

BIGINT NOT NULL PRIMARY KEY,
BIGINT references tree(id),
BIGINT,

BIGINT,

FLOAT,

FLOAT

CREATE TABLE treeends (

seqid
edgeid
treeid

)

CREATE TABLE
type
)5

CREATE TABLE
id
treeid
type

sScore

)

CREATE TABLE

BIGINT references sequence(id),
BIGINT references edge(id),

BIGINT references tree(id)

scoretype (

VARCHAR (256) NOT NULL PRIMARY KEY

score (
BIGINT NOT NULL PRIMARY KEY,
BIGINT references tree(id),
VARCHAR(256) references scoretype(type),
FLOATS

spanning (
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id BIGINT NOT NULL PRIMARY KEY,

treeid BIGINT references tree(id),
vl BIGINT,
v2 BIGINT,
weight FLOATS,
steering FLOATS
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