Quick Lesson on dN/dS

- Neutral Selection
- Codon Degeneracy
- Synonymous vs. Non-synonymous
- dN/dS ratios
- Why Selection?
- The Problem

What does selection "look" like?

When moving into new dim-light environments, vertebrate ancestors adjusted their dim-light vision by modifying their rhodopsins

•Functional changes have occurred

Biologically significant shifts have occurred multiple times
How do we know whether these shifts are adaptive or random?

Yokoyama S et al. PNAS 2008;105:13480-13485

Neutral Selection

Mutations will occur evenly throughout the genome.

Pseudogenes?

Introns?

Promoters?

Coding Regions?

Codon Degeneracy

Codon Degeneracy

Synonymous vs Non-synonymous

Synonymous: no AA change

Non-synonymous: AA change

Synonymous vs Non-synonymous

dN/dS ratios

- N = Non-synonymous change
- S = Synonymous change
- dN = rate of Non-synonymous changes

dS = rate of Synonymous changes

dN / dS = the rate of Non-synonymous changes over the rate of Synonymous changes

Selection and dN/dS

dN/dS == 1 => neutral selection

No selective pressure

dN / dS <= 1 => negative selection

Selective pressure to stay the same

dN / dS >= 1 => positive selection

Selective pressure to change

Why Selection?

Identify important gene regions

Find drug resistance

Locate thrift genes or mutations

Analyzes whole gene or large segments

But, selection occurs at amino acid level

This method lacks statistical power

Thus the purpose of this paper

single likelihood ancestor counting

The basic idea:

Count the number of synonymous and nonsynonymous changes at each codon over the evolutionary history of the sample

 $NN[D_{S} \mid T, A]$

 $NS[D_{S} | T, A]$

SLAC

SLAC

Strengths:

- Computationally inexpensive
- More powerful than other counting methods in simulation studies

Weaknesses:

- We are assuming that the reconstructed states are correct
- Adding the number of substitutions over all the branches may hide significant events
- Simulation studies shows that SLAC underestimates substitution rate

Runtime estimates

Less than a minute for 200-300 sequence datasets

FEL

fixed effects likelihood

The basic idea:

Use the principles of maximum likelihood to estimate the ratio of nonsynonymous to synonymous rates at each site

FEL

Likelihood Ratio Test $H_o: \alpha = \beta$ $H_a: \alpha \neq \beta$

FEL

Strengths:

- In simulation studies, substitution rates estimated by FEL closely approximate the actual values
- Models variation in both the synonymous and nonsynonymous substitution rates
- Easily parallelized, computational cost grows linearly

Weaknesses:

 To avoid estimating too many parameters, we fix the tree topology, branch lengths and rate parameters

Runtime Estimates:

• A few hours on a small cluster for several hundred sequences

REL

random effects likelihood

The basic idea:

Estimate the full likelihood nucleotide substitution model <u>and</u> the synonymous and nonsynonymous rates simultaneously.

Compromise: Use discrete categories for the rate distributions

REL

 $MG94^* \times REV_{x,y}(dt)$

- $= \begin{cases} 0, & x \rightarrow y \text{ requires} \ge 2 \text{ nucleotide} \\ & \text{substitutions,} \\ \alpha_s \hat{R}_{ij} \pi_{n_y} dt, & x \rightarrow y \text{ is a synonymous substitution of} \\ & \text{nucleotide } i \text{ with nucleotide } j, \\ \beta_s \hat{R}_{ij} \pi_{n_y} dt, & x \rightarrow y \text{ is a nonsynonymous substitution} \\ & \text{of nucleotide } i \text{ with nucleotide } j. \end{cases}$
- 1. Posterior Probability
- 2. Ratio of the posterior and prior odds having $\omega > 1$

REL

Strengths:

- Estimates synonymous, nonsynonymous and nucleotide rates simultaneously
- Most powerful of the three methods for large numbers sequences

Weaknesses:

- Performs poorly with small numbers of sequences
- Computationally demanding

Runtime Estimates:

Not mentioned

Simulation Performance

8 sequences

64 sequences

Selection and dN/dS

dN/dS == 1 => neutral selection

No selective pressure

dN / dS <= 1 => negative selection

Selective pressure to stay the same

dN / dS >= 1 => positive selection

Selective pressure to change