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ABSTRACT

Motivation: Identification of the genetic variation underlying

complex traits is challenging. The wealth of information publicly

available about the biology of complex traits and the function of

individual genes permits the development of informatics-assisted

methods for the selection of candidate genes for these traits.

Results: We have developed a computational system named

CAESAR that ranks all annotated human genes as candidates for

a complex trait by using ontologies to semantically map natural

language descriptions of the trait with a variety of gene-centric

information sources. In a test of its effectiveness, CAESAR

successfully selected 7 out of 18 (39%) complex human trait

susceptibility genes within the top 2% of ranked candidates

genome-wide, a subset that represents roughly 1% of genes in the

human genome and provides sufficient enrichment for an associa-

tion study of several hundred human genes. This approach can be

applied to any well-documented mono- or multi-factorial trait in any

organism for which an annotated gene set exists.

Availability: CAESAR scripts and test data can be downloaded from

http://visionlab.bio.unc.edu/caesar/

Contact: kgaulton@email.unc.edu

1 INTRODUCTION

Unlike Mendelian traits, in which a mutation in one gene is
causative, or oligogenic traits, where several genes are sufficient
but not necessary, complex traits are caused by variation in
multiple genetic and environmental factors, none of which are
sufficient to cause the trait (Peltonen and McKusick, 2001).
The contribution of any given gene to a complex trait is
usually modest. In addition, complex traits often encompass
a variety of phenotypes and biological mechanisms, making it
difficult to determine which genes to study (Newton-Cheh and
Hirschhorn, 2005).
As a result, traditional methods of genetic discovery, such

as linkage analysis and positional cloning, while widely
successful in identifying the genes for Mendelian traits, have

had more limited success in identifying genes for complex traits.
Candidate gene studies have had encouraging success, yet this
approach requires an effective method for deciding a priori
which genes have the greatest chance of influencing suscepti-
bility to the trait (Dean, 2003). Recent advances in genotyping
technology have provided researchers with the ability to test
association in hundreds of genes relatively quickly, and even
the entire genome through a genome-wide association study.
Genome-wide association studies are promising, yet not always
economically feasible or statistically desirable (Thomas, 2006).
Therefore, one of the greatest challenges in disease associa-
tion study design remains the intelligent selection of
candidate genes.
To this end, we have developed a computational methodo-

logy, named CAESAR (CAndidatE Search And Rank), that
uses text and data mining to rank genes according to potential
involvement in a complex trait. CAESAR exploits the knowl-
edge of complex traits in literature by using ontologies to
semantically map the trait information to gene and protein-
centric information from several different public data sources,
including tissue-specific gene expression, conserved protein
domains, protein–protein interactions, metabolic pathways and
the mutant phenotypes of homologous genes. CAESAR uses
four possible methods of integration to combine the results of
data searches into a prioritized candidate gene list. In effect,
CAESAR mimics the steps a researcher would undertake in
selecting candidate genes, albeit faster, potentially more
thoroughly, and in a more quantitative manner.
CAESAR represents a novel selection strategy in that it

combines text and data mining to associate genetic information
with extracted trait knowledge in order to prioritize candidate
genes. In contrast to a number of existing approaches
(Adie et al., 2006; Turner et al., 2003; van Driel et al., 2003),
gene selection is not limited to one or more genomic regions,
as all genes annotated in one of our databases are potential
candidates. CAESAR is ultimately designed for traits in
which the relevant biological processes may not be well
understood and potentially hundreds of reasonable candidate
genes exist.
The potential benefits to a researcher in adopting a

computational approach to gene selection such as CAESAR
include the ability to quickly and systematically process
several hundred thousand biological annotations, many of*To whom correspondence should be addressed.
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which require highly specialized domain expertise to interpret.
This benefit will continue to grow in importance as the
volume and technical detail of annotation data increases.
Relevant gene annotations can easily escape human considera-
tion due to biases that investigators bring to the task of
prioritization and that are difficult to overcome even by
conscious effort. This is particularly valuable for complex
traits, which may be affected by a wider array of biological
processes, some of which may not have been directly implicated
by previous studies. CAESAR also reports the evidence
supporting the prioritization rank of each gene, allowing an
investigator to trace the line of reasoning and to exercise his or
her own judgment as to its validity. Thus, it can be seen as a
very sophisticated aid to manual prioritization.
Though designed to help with the design of an association

study involving a few hundred genes, CAESAR can also be
used to prioritize a smaller number of candidates within a
region of linkage, or to prioritize among polymorphisms
annotated with ranked genes that show significant association
in a genome-wide study.
We have tested CAESAR on 18 susceptibility genes for

11 common complex traits in humans including type 1 and
type 2 diabetes mellitus, schizophrenia, Parkinson’s disease,
cardiovascular disease, age-related macular degeneration,
rheumatoid arthritis and celiac disease. Test genes were
ranked higher than 95.7% of all ranked genes on average,
and higher than 99.7% in the best case.

2 METHODS
CAESAR is comprised of three main steps. First, previously implicated
genes mentioned in the input text are identified and ontology terms are
ranked based on their similarity to an input text. Second, genes are
ranked for each data source independently based on the relevance of the
ontology terms with which they are annotated. Third, the individual
gene lists are integrated to provide a single ranked list of candidate
genes that combines evidence from all data sources. We refer to
these three steps as text mining, data mining and data integration,
respectively. The approach of CAESAR is presented as a schematic
diagram in Figure 1a.

2.1 Text mining

CAESAR requires a user-defined body of text (referred to as a corpus)
as input. This text is ideally an authoritative and comprehensive source
of biological knowledge about the trait of interest. If an online
Mendelian inheritance in man (OMIM) (Hamosh et al., 2005) identifier
is supplied, CAESAR will use the OMIM record as input. Alternately,
the user can provide any other body of text, for instance one or more
review articles.
Since the corpus is written in natural language, the information

must be converted to machine-readable form. This is done in two ways.
First, human gene symbols are identified within the corpus. If an
OMIM record is used as input, gene identifiers can be extracted directly
from the OMIM database. Otherwise, gene symbols are extracted by
matching to a reference list. Genes are weighted based on frequency
of occurrence in the corpus, fg, where the weight cg of extracted gene g is
calculated as fg divided by the sum of all fg across n total extracted
genes. The reference list of standard names, symbols, database
identifiers and corresponding mouse homologs for each gene is
compiled from Entrez Gene (Maglott et al., 2005) and Ensembl
(Birney et al., 2006). The extracted genes are assumed to be relevant

to the biology of the trait, but do not necessarily contribute to the
genetic variation of the trait.

Second, the corpus is used to quantify the relevance of terms within
several different biomedical ontologies. Four ontologies are used as
part of CAESAR, the gene ontology biological process (GO bp) and
molecular function (GO mf ) (Harris et al., 2004), the mammalian
phenotype ontology (MP) (Smith et al., 2005) and the eVOC
anatomical ontology (Kelso et al., 2003) (Table 1). Relevance is
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Fig. 1. CAESAR overview. (a) Text mining is used to extract gene
symbols and ontology terms from the input. In the data-mining step,
genes within each gene-centric data source are ranked based on the
relevance to the trait-centric terms. In the data-integration step, the
results from each source are combined into a single ranked list of
candidates. Db¼database. (b) Eight types of functional information
(GO molecular function and biological process listed together) are
queried using extracted genes and anatomy, phenotype and gene
ontology terms. Genomic regions of interest represent optional user
input. See text for abbreviations.

Table 1. Data sources and ontologies used in CAESAR

Sourcea Versionb URL Records Content

Ontology
MP 01/23/06 www.informatics.jax.org/ 3850 Phenotype
eVOC 2.7 www.evocontology.org/ 394 Anatomy
GO bp 01/23/06 www.geneontology.org/ 9687 Function
GO mf 01/23/06 www.geneontology.org/ 7055 Function
Database
OMIM 01/23/06 www.ncbi.nih.gov/ 16564 Disease
Gene 10/01/05 www.ncbi.nih.gov/ 32859 Gene
Ensembl 37.35j www.ensembl.org/ 20134 Gene
SwissProt 48.8 www.ebi.ac.uk/uniprot/ 13434 Expression
TrEMBL 31.8 www.ebi.ac.uk/uniprot/ 57551 Expression
InterPro 12.0 www.ebi.ac.uk/interpro/ 12542 Domain
BIND 10/01/05 www.bind.ca/ 35661 Interaction
HPRD 10/01/05 www.hprd.org/ 33710 Interaction
KEGG 41.0 www.genome.jp/kegg/ 209 Pathway
MGD 3.41 www.informatics.jax.org/ 7705 Phenotype
GAD 01/23/06 hpcio.cit.nih.gov/gad.html 8176 Association
GOA 01/23/06 www.ebi.ac.uk/goa/ 27768 Function

aSee text for abbreviations.
bDownload date reported where version information is not available.
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quantified using a similarity search under a vector-space model
(Salton et al., 1975), as follows (Fig. 2). For each ontology, the
individual terms are split into separate documents containing the
term name and term description if available. These documents together
comprise a document database, or search space, against which the
corpus is queried (Fig. 2a). The corpus and each document are
converted to vectors vi ¼< wi1,wi2, :::,win > with dimensionality equal
to the size of the word space n, which is the total number of unique
words in the document database. Commonly used stop words such as
‘and’ and ‘the’ are removed from the word space. Each element of the
vector for document i is calculated as wij ¼ eij, where eij is the number
of occurrences of word j in the document.

The similarity of the corpus to each document is calculated as the
cosine of the angle between the vectors, which is equal to the dot
product of the vectors divided by the product of the magnitudes of
the vectors. A larger cosine indicates vectors with greater similarity.
Using this measure, ontology terms are weighted based on their
similarity to the corpus (Fig. 2c), where the weight ct of term t is directly
equal to the cosine.

2.2 Data mining

Eight sources of gene-centric information are used to map ranked
ontology terms to the genes annotated with them (Fig. 1b). The result-
ing output is eight lists of gene scores, one for each functional category.
Mammalian phenotype ontology terms are used to query the mouse

genome database (MGD) (Blake et al., 2003) for genes producing
a given phenotype when mutated and to query the genetic association
database (GAD) (Becker et al., 2004) for genes showing positive
evidence of association with a phenotype in a human population. The
eVOC anatomical ontology terms are used to query the UniProt
database (Bairoch et al., 2005) for genes expressed in a given tissue.
Gene ontology terms are used to query the gene ontology annotation
database (GOA) (Camon et al., 2003) for genes annotated with a given
gene ontology biological process or molecular function term. Finally,
the extracted genes are used to query the biomolecular interaction
network database (BIND) (Alfarano et al., 2005) and the human
protein reference database (HPRD) (Peri et al., 2004) for genes
encoding proteins that interact with the protein products of the
extracted genes, query the Kyoto encyclopedia of genes and genomes
(KEGG) pathway database (Kanehisa et al., 2004) for other genes
involved in the same human cellular pathways and query the InterPro
protein domain database (IPro) (Apweiler et al., 2000) for genes sharing
conserved protein domains with the extracted genes.
The user may also optionally input one or several genomic sequence

regions to include genes in chromosomal regions implicated through
genetic linkage as an additional list of genes (Fig. 1b).
The score rij of gene i for source j is then calculated as either the

maximum, sum or mean of the weights of the k matching ontology
terms or extracted genes c1 . . . ck. The three alternatives weigh the
combined evidence for relevance in different ways, as described below
for data integration from multiple sources.

2.3 Data integration

The gene scores from the eight sources are integrated to produce one
combined score for each gene. Integration is accomplished using one of
four methods. Each method represents a different approach that an
investigator might choose when manually prioritizing candidate genes
on the basis of evidence from several data sources.
The first three methods involve taking the maximum, sum

or mean of the z-transformed rij scores for each gene. The maximum
favors genes with strong evidence from one data source, the sum
favors genes with evidence in many data sources and the mean favors
genes with strong evidence only, penalizing genes with any weak
evidence. The maximum mean and sum are referred to as int1, int2
and int3, respectively. Transformed scores are calculated as
zij ¼ ðrij $ !xjÞ=sj, where !xj is the mean and sj the SD of the scores
from source j. The combined score !&, i is then obtained by calculating
the maximum

!int1, i ¼ max zij

average

!int2, i ¼
Xn
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Fig. 2. Vector-space similarity search. (a) Each ontology term and its
description comprise a document, as in this example of three terms from
the mammalian phenotype ontology. (b) The word space consists of all
unique words. For illustration, here the word space is (‘insulin’,
‘resistance’, ‘glucose’). Each document, including the corpus, describes
a vector in word space, where the elements of the vector are weighted
counts within the document of each word in the word space. (c) The
similarity of each of the documents to the corpus is measured as the
cosine of angle formed by the document and corpus vectors. High-
ranking ontology terms have document vectors that are similar in both
direction and magnitude to the corpus vector. In this example,
MP:0005331 is the highest-ranking document.
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or sum

!int3, i ¼
Xn

j¼0

zij

of the transformed scores for gene i.
The fourth method, referred to as int4, differs from the other

three by considering both the score of a gene within a data source
as well as the number of genes returned for that data source. First,
a transformed score sij is obtained.

sij ¼
rijPn
i¼0 rij

The transformed gene scores are then summed together to provide
a final score for each gene.

!int4, i ¼
XJ

j¼1

sij
gj
G

where gj is the number of genes returned for source j and

G ¼
XJ

j¼1

gj

2.4 Implementation

The CAESAR algorithms were written using Perl version 5.8.1
and Java version 1.4.2. The vector space similarity searches were
performed using a modified version of the Perl module

Search::VectorSpace by Maciej Ceglowski (http://www.perl.com/pub/
a/2003/02/19/engine.html). Databases and ontology schemas were
downloaded and parsed into XML under a custom XML schema.
Intermediate text and data-mining results were also stored as XML
under the same schema.

2.5 Selection of the tests for complex traits

To assess the ability of CAESAR to choose valid candidates, 18 test
genes were selected from recently published reports providing strong
evidence of statistical association with known complex human
disorders. The test genes included CTLA4 (Ueda et al., 2003),
PTPN22 (Bottini et al., 2004), PTPN22 (Begovich et al., 2004),
SUMO4 (Guo et al., 2004), FCRL3 (Kochi et al., 2005), ENTH
(Pimm et al., 2005), EN2 (Gharani et al., 2004), TCF7L2 (Grant et al.,
2006), CFH (Klein et al., 2005), LOC387715 (Rivera et al., 2005),
LTA4H (Helgadottir et al., 2006), C2 (Gold et al., 2006),
CFB (Gold et al., 2006), NPSR1 (Laitinen et al., 2004), MYO9B
(Monsuur et al., 2005), IL2RA (Vella et al., 2005), SEMA5A
(Maraganore et al., 2005) and LOC439999 (Grupe et al., 2006).

Each disorder required a custom corpus, either an OMIM record
or one or more review articles describing the biology of the disorder
(Table 2). Review articles were selected by searching PubMed
(Wheeler et al., 2006) for articles published before the year of discovery
of each gene association. Where multiple suitable review articles
were available, the texts were concatenated to produce the corpus.
We removed any direct reference to the testing gene in the input text.
In addition, entries in the GAD containing the test genes were removed.
Thus, the input data closely mimicked the state of knowledge prior

Table 2. Tests using susceptibility genes for complex human traits

Complex trait OMIM Review(s)a Geneb Reviews OMIM

Rank Total Percent Enrich Rank Total Percent Enrich

Age-related macular 603075 15094132; 15350892 CFH 7263 13771 47.3 2 10450 12608 17.1 1
degeneration LOC387715 – 13771 – – – 12608 – –
ARMD (second run) 603075 N/Ac C2 – – – – 766 12875 94.1 17

CFB – – – – 44 12875 99.7 293
Alzheimer’s disease 104300 15225164 LOC439999 – 13550 – – – 13709 – –
Asthma 600807 12810182; 14551038 NPSR1 1117 13881 92.0 12 2835 13120 78.4 5
Autism 209850 11733747; 12142938 EN2 98 13610 99.3 139 98 13213 99.2 135
Celiac disease 212750 12907013; 12699968;

14592529
MYO9B 234 13039 98.2 56 168 12703 98.7 76

Myocardial infarction 608446 15861005; 16041318 LTA4H 122 14043 99.1 115 –d – – –
Parkinson’s disease 168600 16026116; 16278972 SEMA5A 4548 13477 66.2 3 879 13329 93.4 15
Rheumatoid arthritis 180300 15478157; 12915205 PTPN22 333 13279 97.5 40 2156 13038 83.5 6

FCRL3 3743 13279 71.8 3 2230 13038 82.9 6
Schizophrenia 181500 15340352; 16033310 ENTH 10013 14603 31.4 1 8065 13572 40.6 2
Type 1 diabetes mellitus 222100 12270944; 11921414 SUMO4 12123 14272 15.1 1 7675 13130 41.5 2

11237226; 11899083 PTPN22 165 14272 98.8 86 833 13130 93.7 16
IL2RA 130 14272 99.1 110 528 13130 96.0 25
CTLA4 78 14272 99.5 183 324 13130 97.5 40

Type 2 diabetes mellitus 125853 15662000; 15662001; TCF7L2 2911 13922 79.1 5 4013 13586 70.5 3
15662002; 15662003

Totals 725e 13826e 94.7e 54f 879e 13130e 93.4e 43f

aPubMed ID(s) of review articles used in corpus.
bFor references see Methods section. HUGO approved gene symbols used to identify genes.
cNo suitable review corpus available (see Methods section).
dThe OMIM record is insufficiently detailed and was not used.
eMedian result.
fMean result.
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to the discovery of the positive association between the disease and
the test gene.

In the case of age-related macular degeneration (ARMD),
positive associations for the two test genes, CFB and C2, were reported
after the discovery of CFH as a suscuptibility gene for the disease. Due
to the absence of a suitable review article incorporating the discovery
of CFH, results for these two test genes employ the ARMD OMIM
corpus only.

A common way of summarizing the performance of previous
candidate gene selection algorithms is to calculate ‘fold enrichment’,
which is the total number of ranked genes divided by the rank of
the test gene. Fold enrichment must be interpreted with caution,
because it is not calculated relative to random expectation. Nonetheless,

we report this statistic in order to facilitate comparison with
other methods.

3 RESULTS

3.1 Testing of recently discovered complex trait genes

We tested the performance of the algorithm on a set of test
genes previously reported to be associated with 11 complex
human diseases (Table 2). For each disease, we selected one or
more genes for which recent population genetic studies have
reported a significant association with the disease phenotype.
Nearly 15 000 genes had sufficient information from one or
more data sources to be ranked. Table 2 summarizes results of
the 18 test genes by separately considering tests using review
articles and OMIM records as input, although not all genes
were tested using both input types. In order to report the
success of CAESAR using all 18 genes, we combined review
article tests for 16 genes with OMIM record tests for 2 genes,
CFB and C2, which were not tested using review articles
(see Methods section). The following results using all 18 test
genes are thus not summarized in Table 2.
First, we evaluated the choice of data-mining method for

determining the score rij of each gene i for each data source j
(see Methods section). The distributions of the ranks are
shown in Figure 3a. Each data-mining method used the int4
integration method (data for other integration methods not
shown). The maximum method had a smaller median rank
(549.5) than both the sum (1353) and mean (1020) methods.
Second, we evaluated the four different methods for the

integration of data from different sources (Fig. 3b). Int4 yielded
the smallest median rank (549.5) compared to the results for
int1 (max), int2 (mean) and int3 (sum), which were 1488, 2594
and 1201, respectively. Furthermore, int4 had smaller upper
and lower quartile ranks than int1, int2 and int3. We thus
report the results for the maximum data-mining and int4
integration method in what follows.
Overall, 16 of 18 test genes were ranked with a median

rank of 549.5 and 67-fold average enrichment. Seven of the
18 test genes (39%) were ranked higher than 98% of all ranked
genes for the trait in question, while five (28%) ranked in the
99th percentile. The highest rank seen in our tests was 44 for
CFB, a susceptibility gene for age-related macular degenera-
tion, which corresponds to a 293-fold enrichment. Two of the
genes, LOC387715 and LOC439999, were unranked due to a
lack of information on these genes in any of the data sources.
We compared the observed distribution of the ranks for

the 18 test genes to that expected by chance, which is a minimal
test for the effectiveness of the method. The expected mean
percentile for a random gene would be 50. The observed mean
percentile is 80.5 and, under a binomial expectation, the 95%
confidence interval is 66–95. Thus, the observed distribution
of ranks for the test genes is significantly displaced relative to
random expectation.

3.2 Comparison of input texts

We next examined the effect of the choice of corpus on the
ranks for the test genes. Using review article corpus tests only,
14 of 16 test genes were ranked, with a median rank of 725 and

Max

Mean

Sum

50 100 500 2000 5000

Int1

Int2

Int3

Int4

10 50 500 5000

A

Gene rank

B

Gene rank

Fig. 3. Box and whisker plot distributions of the ranks of 18 test genes
in Table 2 using different CAESAR parameters. Ranks are plotted on
a log scale. Plots are constructed so that the bounds of the box are the
upper and lower quartile medians, the line inside the box is the median,
the whiskers extend to the last value no more than 1.5 times the length
of the box, and all remaining values are outliers. (a) Distribution of
ranks using the max, mean and average data-mining methods
(int4 method for integration). (b) Distribution of ranks using the four
different integration methods (max data-mining method).
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54-fold average enrichment. Six of the 16 test genes (37.5%)
ranked in the 98th percentile, while four (25%) ranked in the
99th percentile (Table 2).
For comparison, we selected for each disease the relevant

records from the OMIM database. For all tests the int4 method
was used (Table 1). The test for candidate genes of myocardial
infarction was omitted because the OMIM record for this
disease is only '100 words in length, which would be
insufficient for reliably scoring a large number of ontology
terms. Of the remaining 17 genes tested, 15 sufficient
information to be ranked. The median rank was 879 with an
average 43-fold enrichment. The best performance was
observed for CFB, with 293-fold enrichment. Three of the
17 test genes (17.6%) ranked in the 98th percentile of all ranked
genes, while 2 of 17 (11.8%) ranked in the 99th percentile.
Only one gene, SEMA5A, had a dramatically improved
rank relative to that obtained using a corpus of published
review articles. Thus, the ranks for the test genes using OMIM
records, while still clearly an improvement over random
expectation, are in most cases inferior to those obtained using
review articles.
We examined whether the length of the input text could

help explain the difference in performance between the two
types of input text. The length of each corpus was measured
as the number of words excluding stop words and non-word
characters. There was no significant correlation between the
length of the corpus and the rank obtained for each test gene
(Spearman’s " ¼ $0:21, P¼ 0.27).

3.3 Analysis of bias

CAESAR is dependent on available annotations to rank genes.
Therefore, the preferential ranking of well-annotated genes
is a potential source of bias in the results. We addressed this

issue in two ways, by measuring the effect of both breadth and
depth of annotation on gene rank. We first measured the
correlation between gene rank and the breadth of annotation,
or the number of sources for which a gene is annotated,
across each integration method. Using the default methods
(max and int4), there is a strong correlation (" ¼ $0:75),
as shown in Figure 4. By comparison, again using the max
method, int2 (" ¼ $0:15) and int3 (" ¼ $0:06) showed little
correlation, while int1 showed modest correlation (" ¼ $0:47).
We next addressed the correlation between gene rank and

annotation depth by considering the number of GO annota-
tions (biological process þ molecular function) per gene.
For each data-mining method, and using int4 for data
integration, we calculated the mean number of GO terms for
genes ranked within the top 98th percentile (max: 7.2) 4.1; avg:
6.2) 3.7; sum: 9.8) 5.3) and found this to be significantly
higher than the mean number of GO terms across all ranked
genes (4.6) 2.9) for all three data methods (two-tailed,
unpaired t-tests, P-values <2* 10$16).
Data sources used by CAESAR include diverse available

sources of gene-centric information; however, non-indepen-
dence among data sources could also potentially bias the
results. To address this issue, we measured the average correla-
tion between the ranked gene lists for each tested trait using the
review article corpus (Table 3). The majority of the sources
show a mild, yet significant, correlation. No two data sources
show a correlation greater than " ¼ 0:43. Several pairs of
sources show very weak negative correlations.

4 DISCUSSION

The extraordinary amount of biological information available
in the published literature and in publicly available databases
about complex human diseases, on the one hand, and genes
and their protein products, on the other, is well suited
to the in silico identification of candidate genes for disease.
The approach is enabled by ontologies that provide a
semantic mapping between the natural language description
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Fig. 4. The relationship between the rank of a gene and the number of
data sources in which it is annotated, using the max and int4 methods.
Ranks are plotted on a log scale. Box and whisker plots were
constructed as described for Figure 3.

Table 3. Independence of CAESAR data sources

GAD GObp GOmf PPI IPro MGD Path Tissue

GAD – $0.04 $0.04 0.08 0.06 0.10 0.11 $0.03
GObp 2e$6 – 0.43 $0.06 0.12 $0.11 $0.10 $0.06
GOmf 5e$6 2e$16 – $0.07 0.16 $0.15 $0.08 $0.11
PPI 2e$16 2e$13 2e$16 – 0.08 0.18 0.21 $0.04
IPro 1e$10 2e$16 2e$16 2e$16 – 0.08 0.13 $0.10
MGD 2e$16 2e$16 2e$16 2e$16 2e$16 – 0.27 $0.13
Path 2e$16 2e$16 2e$16 2e$16 2e$16 2e$16 – $0.18
Tissue 2e$4 2e$10 2e$16 1e$6 2e$16 2e$16 2e$16 –

Top: Spearman rank correlations among pairs of sources. Each value represents
the maximum correlation found for a given pair across data for all 11 tested
complex traits using default parameters. Bottom: Significance of each correlation.
GAD¼ genetic association database data, GObp¼GO biological process data,
GOmf¼GO molecular function data, PPI¼protein–protein interaction data,
IPro¼ InterPro data, MGD¼mouse genome database data, path¼KEGG
pathway data, tissue¼ Swiss-prot/TrEMBL tissue data.
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of diseases and traits, and the functional annotation of
genes and their products. It is further enabled by the
availability of well-curated pathway and protein-interaction
datasets, and a wide variety of functional information
about not only the genes themselves, but also their
homologs in model organisms. The approach implemented
in CAESAR can, in principle, be applied to any complex
trait in any organism for which similar information
resources exist.
CAESAR relies on human expert knowledge in order to

function effectively, but it does not require that the user
actually possess all of this knowledge. At a minimum, the user
needs to select a relevant corpus, but much more user
intervention is possible. The user may manually modify the
scores from the text-mining step and/or introduce genes in
addition to those that were extracted from the corpus. The final
rankings may be modified based on user perceptions of the
importance of particular data sources. The user may also
restrict the algorithm to consider only certain genomic regions
or particular sets of genes. While it is not advisable to eliminate
human judgment and oversight of the candidate gene
selection process, due to the volume and the complexity of
the information involved, semi-automated methods such as
CAESAR may well outperform an unaided expert. At the
very least, CAESAR provides a quantitative starting point
for which the assumptions are clear and the user’s biases are
minimized.
The success of CAESAR in any given instance is due both

to factors that are, at least to some extent, under the user’s
control and those that are not. The user’s choice of a corpus
that accurately reflects the biology of the trait is clearly of
critical importance. In our experiments, we found that review
articles generally, though not always, yielded better results
than OMIM records. The explanation for this difference
is not clear; it does not appear to be due to differences in
corpus length.
Other factors under the user’s control are algorithmic, e.g.

how to calculate a score for a gene within a data source and to
rank genes across multiple data sources. The variety of simple
methods used here can, in some cases, lead to substantially
different rankings. One example is NPSR1, which had ranks
of 749 and 2751 using int1 and int2, respectively. Four
different data sources (GO bp, GO mf, IPro and tissue)
report information on NPSR1, and the scores vary from high
to low. Int1, which calculates the maximum, favors genes
with a high score in one data source regardless of the others,
whereas the low scores are detrimental to the final rank using
int2, which calculates the average. Each of the methods can
be justified (see Method section), and it is not clear a priori
which should be superior.
Overall, we found that the best results on the test set were

obtained using a corpus of review articles, the maximum
method for combining scores for a gene within a data source,
and the int4 method for data integration across multiple
sources. However, other combinations of parameters were
superior for particular test genes. On the basis of our test
results, we have selected the ‘max’ data-mining and ‘int4’
data-integration methods to be the default settings for
CAESAR. The OMIM record, if available, is used as the

input text by default, though our results suggest that one or
more review articles should be used instead, or in addition,
when possible.
A number of factors affecting CAESAR’s success are outside

of the user’s control. One is the depth of biological knowledge
about the complex trait under study and the extent to which
this knowledge has been recorded. Another is the extent to
which ontologies can be used to mediate between trait-centric
and gene-centric information sources. For example, anatomical
ontologies are available for mammals, but not yet for all
organisms. Even where an ontology exists, certain terms may
not exist, have listed synonyms, or be sufficiently well defined.
The process of extracting gene names from unstructured

text is also error-prone (Hirschman et al., 2005), especially
when using older bodies of text containing outdated gene
names and symbols. Gene extraction is complicated further
by the fact that genes often share symbols with other genes and
non-gene acronyms.
Perhaps most importantly, CAESAR depends on the

availability of functional information. Approximately half of
the unique entries in our reference set remained unranked
for any trait due to lack of annotation, including two of the
test genes, LOC387715 and LOC439999. As the total number
of ranked genes depends on the number of ontology terms
that are mapped from the corpus, the success of CAESAR
for a given trait depends on the information content of the
corpus. One tested trait, myocardial infarction did not have
a sufficiently informative OMIM record. Therefore, CAESAR
is limited to genes and traits for which there is sufficient
information in the form of annotations and text descriptions,
respectively. To the extent that this reflects incomplete
knowledge of genes and traits, it is a limitation shared by all
candidate gene approaches. The lack of gene-centric informa-
tion, at least, can be partially overcome by including additional
data sources from map-based studies, systematic functional
genomic screens and other model systems in which homologs
may have been characterized.
Given the importance of including a wide variety of

functional information, CAESAR could be enhanced by the
inclusion of additional data sources. A particularly valuable
source would be data from transcription profiling experiments,
which would provide information on a large proportion
of genes that are lacking information from other sources.
Inclusion of this data will be challenging, however, as the
datasets available are diverse and heterogeneous, and it is not
clear how best to score the relevance of a particular expression
pattern to a trait.
Inclusion of additional data sources could potentially raise

the issue of non-independence among them. Although no
two data sources used in this study are highly correlated,
most of them have a significant weak correlation. CAESAR
does not currently correct for non-independence during the
data-integration step.
A variety of in silico methods for candidate gene selection

have previously been reported, though most have been designed
and tested to prioritize positional candidates. Gene-Seeker
(van Driel et al., 2003) selected candidates in a given genomic
region through web-based data mining of expression and
phenotype databases. This approach enriched for disease genes
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in 10 monogenic disorders, providing at best 25- and 7-fold
enrichment on average. POCUS (Turner et al., 2003) exploited
functional similarities between genes at two or more loci to
predict candidates, requiring no user input beyond the genomic
regions of interest. It provided 12-, 29- and 42-fold enrichment
on average for three test loci of increasing size and at best
provided 81-fold enrichment. Perez-Iratxeta et al. (2002) used
literature mining to associate pathology with GO terms and
then used these terms to rank candidate genes. The authors
created artificial loci containing an average of 300 genes for
testing and found 10-fold enrichment on average and, at best,
38-fold enrichment. The correct disease gene was present in
their enriched set for '50% of the loci. Freudenberg and
Propping (2002) computed similarity-based clusters of known
disease genes based on phenotypic sharing between diseases.
Their method selected the correct disease gene in roughly
two-thirds of the cases, on average resulting in 10-fold
enrichment, and in the top one-third of the cases resulting
in 33-fold enrichment. Franke et al. (2006) developed a
functional network of human genes to select candidate genes
found in pathways with known disease genes. They constructed
artificial loci that contained on average 100 genes, and
found 20- and 10-fold enrichment on average in 27 and 34%
of tested genes, respectively.
More recently, SUSPECTS (Adie et al., 2006) and

ENDEAVOUR (Aerts et al., 2006) have been developed for
application to more complex traits. Both of these systems
prioritized genes using a combination of annotation and
sequence features based on similarity to a training set.
SUSPECTS was able to identify a test gene in artificial loci
on average within the top 13% of candidates, a 7-fold
enrichment. In half the cases, the test gene was in the top 5%
of candidates, a 20-fold enrichment. ENDEAVOUR tested
both monogenic and polygenic (complex) disorders using a test
set of 200 genes. Over all tested disorders, ENDEAVOUR
provided 9-fold enrichment on average and 200-fold
enrichment at best. Considering polygenic disorders only,
ENDEAVOUR provided 5-fold enrichment on average and
18-fold enrichment at best.
The measure of success for an approach such as CAESAR

ultimately depends on the specific application. Our goal has
been the enrichment of candidates within the top 2% of ranked
genes, which represents roughly the top 1% of genes in the
human genome. Given the number of functionally annotated
human genes, this corresponds to 250–300 genes, which is a
reasonable number included in a high-resolution SNP associa-
tion study for a complex disease in human populations.
Our results suggest that approximately one-third to one-half
of the genes previously associated with complex human disease
would be included in this enriched candidate set. With
a complex trait, for which the true effectors are only partially
known, it is difficult to quantify the number of true and false
positives. Nonetheless, assuming all genes outside of our test set
are negatives, we can calculate sensitivity as TP/(TPþFN) and
specificity as TN/(TNþFP), where TP is the number of true
positives, TN is the number of true negatives, FP is the number
of false positives and FN is the number of false negatives.
Considering positives to be the top 2% of ranked genes, we
obtained an overall sensitivity of 39% and specificity of 98%

for our test set. Other measures of success may be relevant for
different applications, such as prioritizing SNPs for follow-up
work from a genome-wide association study. By standard
measures, CAESAR compares favorably with other methods,
even though we use a test set of genes associated with complex
rather than monogenic or oligogenic diseases. The highest (293)
and average (67) fold enrichment obtained with CAESAR
are greater than those reported for other systems.
CAESAR makes use of a relatively small trait-specific

corpus, comprised of one to several review articles, and
a large body of gene-centric information. A similar approach
could be useful for other applications involving semantic
mediation between larger corpora or sets of corpora.
In conclusion, CAESAR can successfully mine large amounts

of biological information to guide the selection of candidate
genes for complex diseases in humans. Applications include
selection of candidate genes for association or re-sequencing
studies, prioritization of candidates for functional genomics
experiments, or evaluation of results from linkage and genome-
wide association studies. The approach may be extended to
select candidates for complex traits in other organisms for
which similar informatic resources are available. No computa-
tional system can select candidate genes with certainty;
however, when used as a guide, CAESAR is a useful tool for
candidate gene prioritization.
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