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Abstract—Modern approaches to treating genetic disorders,
cancers and even epidemics rely on a detailed understanding
of the underlying gene signaling network. Previous work has
used time series microarray data to infer gene signaling
networks given a large number of accurate time series samples.
Microarray data available for many biological experiments
is limited to a small number of arrays with little or no
time series guarantees. Asynchronous Inference of Regulatory
Networks (AIRnet) provides gene signaling network inferrence
using more practical assumptions about the microarray data.
By learning correlation patterns from all pairs of microarray
samples, accurate network reconstructions can be performed
with data that is normally available in microarray experiments.
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I. INTRODUCTION

Sequencing the human genome is one of the great accom-
plishments in recent history. The knowledge gained through
sequencing the human genome is vast and holds great im-
plications for medical practice[2]. No single gene, however,
decides how an organism grows and matures. Genes form
regulatory networks where many genes interact to produce
an observable phenotype[3], [4]. An understanding of gene
regulatory networks is the key that will open the door to
major breakthroughs in fields as diverse as agriculture[5],
[6], [7] and medicine[8], [9], [10], [11], [12].

Gene regulatory networks are complex. Many factors can
influence each gene’s expression at any moment. One or
more proteins produced by other genes within the regu-
latory network can promote or inhibit the expression of
a particular gene. Asynchronous Inference of Regulatory
Networks (AIRnet) unravels the complexity of these reg-
ulatory networks using unsynchronized microarray data that
is generally available to researchers to create a network
based on the correlation of gene expression changes between
microarray experiements. One of the key functions of AIRnet
is to compare two of these networks, and easily highlight the
differences.

AIRnet has produced promising results, inferring realistic
in-silico regulatory networks.

II. RELATED WORKS

There are many different strategies that have been formu-
lated to deduce gene regulatory networks from microarray
data. In a paper written by Wang et al.[13], a strategy
is proposed that uses multiple microarray samples from
different experiments to find a gene regulatory network.
Each of these data sets represents a unique experiment. Each
experiment is assumed to represent a unique perturbation to
the gene regulatory network. Gene regulatory networks are
also assumed to be sparse. Differential equations are used
to derive a general solution that is the best representation
of the invariant parts of the different microarray data sets.
Their results show that they are successful in reconstructing
small networks. Our algorithm, unlike Wang et al., does
not utilize differential equations to form a model of the
regulatory network, but employs a much simpler method that
can be extended to whole genome studies.

Another popular strategy developed by Liao et al.[14],
called network component analysis, makes assumptions
about power law relationships between genes and the factors
that influence their expression. They explain that microarray
data is frequently given as a log ratio, thus being pseudo-
linear. Then, based on these premises, a regulatory network
can be written as E = A ∗ P . Where E is the microarray
data, A represents prior information about the network, and
P represents samples of regulatory signals. When there is
no noise associated with this relationship, there is a unique
analytic solution that can be found. In real applications,
there is noise, and through the use of simulated and real
data they are able to reconstruct gene relationships with
acceptable accuracy. Their results depend largely on the
amount of noise present. A shortcoming of this approach
is that prior information about a network needs to be known
and expressed in matrix form. Another problem is that there
are very stringent constraints on the characteristics of matrix
A. A has to have full column and row rank, and if any
connections are removed, A still has to have full column and
row rank. These restrictions make this method cumbersome
to use and limits the datasets that it can be applied to.
AIRnet’s algorithm can be applied to any set of microarray
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Table I: Discretization of data by k-means clustering for an in-silico network consisting of 10 genes [1] - genes are divided
by row, samples are divided by column.

(a) Pre-discretized data for an in-silico regulatory network consisting of 10 genes

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-) G9(-/-) G10(-/-)
G1 0.105 0.034 0.927 0.088 0.015 0.049 0.102 0.105 0.018 0.124 0.171
G2 0.877 0.804 0.000 0.864 0.870 0.981 0.837 0.873 0.797 0.860 0.890
G3 0.054 0.000 0.838 0.000 0.103 0.000 0.069 0.000 0.085 0.026 0.048
G4 0.386 0.310 0.611 0.243 0.083 0.432 0.440 0.394 0.364 0.531 0.358
G5 0.801 0.808 0.748 0.903 0.793 0.000 0.880 0.741 0.686 0.321 0.802
G6 0.118 0.051 0.463 0.006 0.167 0.046 0.058 0.082 0.103 0.149 0.133
G7 0.339 0.359 0.116 0.476 0.423 0.381 0.384 0.012 0.728 0.396 0.779
G8 0.894 0.893 0.965 0.874 0.920 0.805 0.968 0.904 0.002 0.873 0.904
G9 0.870 0.885 0.859 0.787 0.825 0.933 0.862 0.888 0.819 0.016 0.792
G10 0.898 0.908 0.903 0.882 0.798 0.905 0.865 0.828 0.854 0.912 0.065

(b) Post-discretized data for an in-silico regulatory network consisting of 10 genes, k = 2.

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-) G9(-/-) G10(-/-)
G1 0 0 1 0 0 0 0 0 0 0 0
G2 1 1 0 1 1 1 1 1 1 1 1
G3 0 0 1 0 0 0 0 0 0 0 0
G4 1 0 1 0 0 1 1 1 1 1 1
G5 1 1 1 1 1 0 1 1 1 0 1
G6 0 0 1 0 0 0 0 0 0 0 0
G7 0 0 0 0 0 0 0 0 1 0 1
G8 1 1 1 1 1 1 1 1 0 1 1
G9 1 1 1 1 1 1 1 1 1 0 1
G10 1 1 1 1 1 1 1 1 1 1 0

(c) Post-discretized data for an in-silico regulatory network consisting of 10 genes, k = 4.

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-) G9(-/-) G10(-/-)
G1 0 0 1 0 0 0 0 0 0 0 0
G2 1 1 0 1 1 1 1 1 1 1 1
G3 0 0 1 0 0 0 0 0 0 0 0
G4 1 0 1 0 0 1 1 1 1 1 1
G5 1 1 1 1 1 0 1 1 1 0 1
G6 0 0 1 0 0 0 0 0 0 0 0
G7 0 0 0 0 0 0 0 0 1 0 1
G8 1 1 1 1 1 1 1 1 0 1 1
G9 1 1 1 1 1 1 1 1 1 0 1
G10 1 1 1 1 1 1 1 1 1 1 0

data and will extract as much of the signal that is present in
the data.

A third method for discovering gene regulatory networks
is being attempted by Nathan Barker [15] of the University
of Utah. His method first divides the microarray expression
data into three categories; high, medium and low. Each
gene is assigned one of these values based on its relative
expression level when compared to each of the other genes’
expression levels. This categorization of genes assigns an
approximately equal number of genes to each of the three
categories. Barker’s algorithm then uses the changes between
these categories to build an influence vector that shows the
degree of influence each gene has on every other gene.
Barker’s algorithm assumes it has time series data when
comparisons between samples are made. This assumption
allows the algorithm to decide which gene is promoting
or inhibiting another, rather than just find that there is a
promoting or inhibiting relationship between two genes.

The main problem with Barker’s algorithm is in the use
of time series data. The simple fact that several samples are
taken sequentially does not guarantee that they are sequential
as far as the biological model is concerned. The time taken
for genes interact with one another is too small for us to
accurately measure, and certainly too small to isolate the
system at each time step, which would be necessary to fulfill
Barker’s time series assumption. While Barker’s ideas may
be theoretically sound, in practice, the actual acquisition of
time series microarray data that is accurate with respect to
the biological model is impractical. Since AIRnet does not
expect time series data, it can be applied to more practical
microarray datasets.

Other methods of microarray analysis are based on sta-
tistical significance tests. Gene Set Enrichment Analysis,
proposed by Subramanian et al.[16], and Significance Anal-
ysis of Microarray Gene Sets, proposed by Dinu et al.[17],
are two methods that apply statistical tests to previously
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Table II: Activation State Change Examples - genes are divided by row, samples are divided by column

(a) equal, non-zero activation state changes - vxy incremented

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-) G9(-/-) G10(-/-)

G1 0 0 1 0 0 0 0 0 0 0 0
G2 1 1 0 1 1 1 1 1 1 1 1
G3 0 0 1 0 0 0 0 0 0 0 0
G4 1 0 1 0 0 1 1 1 1 1 1
G5 1 1 1 1 1 0 1 1 1 0 1
G6 0 0 1 0 0 0 0 0 0 0 0
G7 0 0 0 0 0 0 0 0 1 0 1
G8 1 1 1 1 1 1 1 1 0 1 1
G9 1 1 1 1 1 1 1 1 1 0 1
G10 1 1 1 1 1 1 1 1 1 1 0

(b) equal magnitude, opposing-signed activation state changes - vxy decremented

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-) G9(-/-) G10(-/-)

G1 0 0 1 0 0 0 0 0 0 0 0

G2 1 1 0 1 1 1 1 1 1 1 1
G3 0 0 1 0 0 0 0 0 0 0 0
G4 1 0 1 0 0 1 1 1 1 1 1
G5 1 1 1 1 1 0 1 1 1 0 1
G6 0 0 1 0 0 0 0 0 0 0 0
G7 0 0 0 0 0 0 0 0 1 0 1
G8 1 1 1 1 1 1 1 1 0 1 1
G9 1 1 1 1 1 1 1 1 1 0 1
G10 1 1 1 1 1 1 1 1 1 1 0

(c) activation state changes equal to zero - qxy incremented

wt G1(-/-) G2(-/-) G3(-/-) G4(-/-) G5(-/-) G6(-/-) G7(-/-) G8(-/-) G9(-/-) G10(-/-)
G1 0 0 1 0 0 0 0 0 0 0 0
G2 1 1 0 1 1 1 1 1 1 1 1
G3 0 0 1 0 0 0 0 0 0 0 0

G4 1 0 1 0 0 1 1 1 1 1 1
G5 1 1 1 1 1 0 1 1 1 0 1
G6 0 0 1 0 0 0 0 0 0 0 0
G7 0 0 0 0 0 0 0 0 1 0 1
G8 1 1 1 1 1 1 1 1 0 1 1
G9 1 1 1 1 1 1 1 1 1 0 1
G10 1 1 1 1 1 1 1 1 1 1 0

selected groups of genes, such as genes in the same signaling
pathway. These methods attempt to identify whether the gene
sets are associated with a particular phenotype. Similarly,
AIRnet can highlight a subset of genes within the entire
network, either treating the subset as the entire network, or
showing only genes, which are highly correlated with one or
more genes in the specified subset. AIRnet will also compare
networks to identify phenotype-specific gene correlations.

III. METHODS

AIRnet infers a gene regulatory network, given reasonable
assumptions about microarray data. Non-time series data
from different samples are used to find correlated patterns in
gene expression. The correlation of gene expression changes
is used to create influence vectors, which highlight the genes
with the highest probability of being correlated. Ultimately,
AIRnet is designed to compare two networks of different

genotypes, in order to draw out differences that will assist
researchers with the development of treatments.

The first step in analyzing microarray data is discretizing
the data (table Ia). While discretizing, the data for a single
gene across all the samples is considered a single dataset.
Each dataset is clustered using k-means clustering. After
all the data sets have been discretized, the data for each
gene in every sample is classified as a number between 0
and k − 1 (table Ib). The new value represents the relative
level of activation for a particular gene, as compared between
samples.

After discretizing the data, AIRnet performs a pairwise
comparison of the change in activation state between sam-
ples for all genes.
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Table III: Reporting AIRnet results for 3 network sizes from the DREAM3 competition. The empty network row shows
values for graphs with 0 edges and provide a baseline to interpret the scores for other networks. The empty network scores
were generated by submitting an empty file with no predictions to the DREAM score evaluator. The other rows correspond
to the type of data used to infer the networks. In the score column, larger values are better. In the other two columns, smaller
values are better. Scores reported are produced using an 80% threshold parameter for AIRnet.

(a) Reporting values for 10-gene networks.

score AUPR p-value average AUROC p-value average
empty network 1.1816e+00 8.5675e-03 5.0578e-01
trajectories 1.6298e+00 2.1759e-03 2.5279e-01
heterozygous 2.2401e+00 3.6441e-04 9.0845e-02
null-mutant 2.8198e+00 4.1550e-05 5.5198e-02

(b) Reporting values for 50-gene networks.

score AUPR p-value average AUROC p-value average
empty network 2.4438e+00 2.6065e-05 4.9687e-01
trajectories 2.6700e+00 6.1865e-06 7.3901e-01
heterozygous 2.6207e+00 7.7215e-06 7.4297e-01
null-mutant 1.4152e+01 5.2984e-26 9.3634e-04

(c) Reporting values for 100-gene networks.

score AUPR p-value average AUROC p-value average
empty network 5.2312e+00 6.8572e-11 5.0297e-01
trajectories 3.8264e+00 4.7395e-08 4.6923e-01
heterozygous 5.2881e+00 6.3523e-11 4.1762e-01
null-mutant 3.7911e+01 1.0263e-71 1.4694e-05

vxy =

qxy +
n−1∑
i=1

n∑
j=i+1

f(xi, xj , yi, yj)

n ∗ (n − 1)/2
(1)

f(xi, xj , yi, yj) =



1 if (xi > xj) ∧ (yi > yj) or
(xi < xj) ∧ (yi < yj);

0 if (xi = xj) ∨ (yi = yj);
−1 if (xi > xj) ∧ (yi < yj) or

(xi < xj) ∧ (yi > yj).

Comparing genes x and y, AIRnet calculates an influence
vector, vxy , representing how correlated x and y appear to
be (equations 1 and 2). Negative values of vxy indicate a
inhibiting relation between x and y, while a positive value
of vxy indicates a promoting relation.

qxy =
n−1∑
i=1

n∑
j=i+1

g(xi, xj , yi, yj) (2)

g(xi, xj , yi, yj) =



1 if xi = xj , yi = yj ,

and xi − yi < k/2;
−1 if xi = xj , yi = yj ,

and xi − yi >= k/2;
0 otherwise.

Following the calculation of vxy for all values of x and
y, AIRnet reconstructs the regulatory network by including
edges that have the highest correlation.

AIRnet produces a graph, G representation of the regula-
tory network, where each node, x, represents a single gene,
and each edge, ({x, y}, v) represents an interaction between
x and y. The sign of v shows the interaction between x
and y as either promoting or inhibiting, while |v| shows
the probability of x interacting with y. To form the graph,
AIRnet adds the edges ({x, y}, wxy), where wxy = 1−|vxy|,
for all values of x and y. To prune edges out of the
graph, Kruskal’s Algorithm is used to find the minimum cost
spanning tree of the graph G, with the addition of stopping
the production of the minimum cost spanning tree when the
value of |wxy| for the next edge to be added falls below a
user-defined threshold. The wxy values are then exchanged
with their corresponding vxy values. This effectively deals
with the mutual information problem[18].

IV. RESULTS

Tests are run on data from in-silico regulatory networks,
originally created for the DREAM3 competition[1]. Three
types of data are used to test AIRnet’s accuracy for each of
the in-silico regulatory networks. The data types are labeled
as heterozygous knock-down, null-mutant, and trajectory.
The heterozygous knock-down and null-mutant data sets
each contain data for the steady states of the wild-type
as well as knock-down or knock-out data for each gene.
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(a) Network inferred using 40% threshold

(b) Network inferred using 80% threshold

(c) True in-silico network

Figure 1: Example in-silico regulatory network, as inferred
by AIRnet.

Trajectory data sets are comprised of time series data, with
21 time points, for each network recovering from external
perturbations. Each network is subjected to, and has data for,
a number of perturbations equal to 46% of the number of
genes within the network.

Figures 0a and 0b depict regulatory networks inferred by
AIRnet using data produced by one of the networks gener-
ated for DREAM3. The in-silico network is shown in figure
0c. Figures 0a and 0b show that higher threshold values
produce more selective networks by excluding connections
for which the correlation between the two genes is not great
enough. Visual verification, however, is not always the best
method for measuring the accuracy of an inferred regulatory
network, especially if the network is large.

Scoring metrics from the DREAM3 competition are used
to verify the statistical significance of AIRnet’s reconstructed
regulatory networks. The DREAM3 metrics calculate the
AUROC and AUPR values and compare the resulting values
with the AUROC and AUPR of 100,000 randomly gen-
erated networks to compute the probability of randomly
creating a network with equal or greater AUROC and
AUPR values, producing a p-value for both the AUROC and
AUPR. The AUROC p-values are combined by averaging the
scores for same-sized networks. The same is done for the
AUPR p-values. The averaged AUROC and AUPR p-values
are subsequently combined as a log-transformed average,
−log10(AUROCp ∗AUPRp)/2. Each log-transformed av-
erage provides a single value, which summarizes AIRnet’s
accuracy for five individual, same-sized networks.

Because the graphs AIRnet produces are signed and
undirected, the standards, against which AIRnet is being
measured, were modified to be undirected as well.

The score, along with the AURR and AUROC p-values,
are displayed in table III. The first row in tables IIIa - IIIc,
the empty network, report the values obtained from reporting
a network with zero edges, or a network which assumes
genes do not interact in any way with each other. The empty
network is not produced by AIRnet, but is included as a
baseline for comparing AIRnet’s accuracy using the supplied
data types. Each other row corresponds to a type of data used
to infer the networks, as specified by the first column.

As seen in table III, the null-mutant data produces sig-
nificantly better results than either of the other two data
types. The networks AIRnet infers using null-mutant data
appear to be only marginally better when inferring small
networks, however, as the network size grows, the null-
mutant produced networks’ accuracy grows at a much faster
rate than the accuracy for networks produced by either the
heterozygous data, or the trajectory (time series) data.

It is interesting to note, using the trajectories data to infer
networks gave the lowest scores of all the data types, in
one case, scoring even lower than the empty network even
though the data was produced by a simulator with accurate
time series outputs (table IIIc).
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Comparing the values in table III with the 300 submissions
to the DREAM3 competition ranks the AIRnet in the top 5
performers. This comparison ignores directionality, which
would probably lower the AIRnet ranking. The results are
promising and are obtained using microarray assumptions
that can be met by most biological experiments.

Experiments were also performed using microarrays from
mice with Down Syndrome phenotypes. An average of 60%
of the connections predicted by AIRnet were validated using
the KEGG[19] database. The KEGG database is biased to-
wards more studied regulatory pathways, so actual accuracy
of AIRnet is probably higher than this number.

V. CONCLUSION

AIRnet uses influence vector to infer regulatory networks
from microarray data with practical assumptions. The mi-
croarray data does not have to have time-series character-
istics and no constraints are placed on the structure of the
matrices. Networks inferred by AIRnet are comparable in
accuracy to the best algorithms participating in the DREAM3
competition even though many of these algorithms were
more restrictive on the kind of data they could use. Edges
predicted by AIRnet compare favorably with experimentally
validated regulatory networks found in KEGG. AIRnet can
perform predictions on microarrays with 20,000 genes in less
than 24 hours, making it practical for most analysis needs.

AIRnet can provide the understanding of gene regulatory
networks necessary for the impending major breakthroughs
in agriculture and medicine.
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