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Superposition and Dynamic
Programming

Most methods for comparing structures include some use of superposition and dy-
flamic programming.

9.1 Superposition

Superposition can be used to find and score equivalences, by measuring how close the
equivalent pairs can come together. One way of thinking of it is to put the structures
on top of each other so that the equivalenced elements from the two structures lie
as close as possible. If the geometry of the structures is not changed in this process,
it is referred to as rigid-body superposition, The score can then be a function of the
distances between the elements of each equivalent pair in the equivalence. Commonly,
the root of the mean of the squares of the distances is used, and is called the roor mean
square deviation (RMSD). Low RMSD values are best, zero indicates exact equality.

Note that superposition can be used to measure (score) equivalences, not necessarily
alignments directly. Two different measures are mainly used.

9.1.1 Coordinate RMSD

Superposition can be done by a fransformation of structure A over B such that the
equivalent pairs come as close as possible.

Let (ay, B1). ..., (&, B;) be the coordinate sets of the equivalenced elements of
the equivalence £ (o; from A and §; from B, for three dimensions a coordinate set
congisting of three values). The problem is then to find a transformation T for A which
minimizes the coordinate root mean square deviation, that is,

1 Is
RMSDc(£Y = min | ——— w; (To; — ,8,‘)2, 9.1)
T S w; -

i=
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{a) . &) ()

Figure9.1 Figure illustrating the saperposition in two dimensions. (a) The structures; o shows
the centroids. (b) A moved so the centroids coincide. (c) A rotased to the minimum RMSD.

where w; are weights corresponding to cach pair (¢;, ;) (and often set to 1). For
residue level structure descriptions, there is usually one coordinate set per residue
(e.g. Cy atom).

A transformation can be performed as a franslation {three distances), and a rota-
tion (three angles, around each of the x-, y- and z-axes). (The rotation can also be
performed in one operation around a line, the direction of the line has to be calculated
for each rotation; cf. Euler’s theorem (Gelbert et al. 1977).)

It has been shown that a transformation for the minimum RMSI can be found by
first shifting the centroids (geometrical centres} of each structure to the origin of a
commeon coordinate system, and then finding the rotation of A which minimizes the
RMSD, as shown in Figure 9.1.

A rotation around the origin can be described by an orthogonal matrix R3 3 (3D
space). (There exist equations describing the connections between the angles (3) and
the values of the matrix (9) (Gelbert et al. 1977, pp. 530-535).) A matrix is orthogonal
if the scalar product of any two different columns is 0, and the result of taking the scalar
product of any column with itself is 1. The matrix must be orthogonal to assure that
the distances between the points of the same structure are not changed (cf. rigid-body
superposition).

The formula can therefore be described by a rotation matrix R and a translation
vector ¢, and we search for a pair {R, r) which minimizes the expression {assuming
w; = | forall i):

.
> (Rai ¢ — Bi) (9.2)
i1

Example
C) > Cs

I I L

Let the matrix R be *{3 \(? «/%;
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o2 o
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We can show that R is orthogonal, for example,

_25_
CoCr=Fm s+ 0+ 57 =
and
Ci-CL= Ll 11l

AT BT R
A point (1, —1, 1) will then be ransformed as

B U
V33 NE 1
1 _ L
v B
2 _2 L 1
NG V6 3
tM%ﬁ%% A

The superposition problem can therefore be formulated as (inding the orthogenal
matrix #5 3 which minimizes the function

P
> (Rei — 1), (9.3)
i=1

where (a1, 81), ..., (a,y, 8r) are now the coordinates after the structures are moved

(translated) to a common origin. Algorithms exist for finding such a matrix that either
use iterative or direct methods.

In Equation (9.1) a weight is specified. For example, one could let wy, be a measure
of how similar the amino acids in the equivalent pair are, andfor how similar the
environments around the residues of the kth pair are, the environment meaning the
spatial position of the neighbouring residues.

9.1.2 Distance RMSD

The distance score method Distance RMSD (RMSDp) alleviates the need for finding
a translation and rotation of one of the structures and is given by

RMSDmﬁj_—— §:§:mﬁ—aﬂf (9.4)

=1 j=1

where § f’} is the spatial distance between the elements of A in pairs i and j of the equiv-
alence. Since there is no need to calculate a transformation, it is a faster calculation.
However, it has a (sometimes serions) weakness: it is invariant under reflection. This
means that if structure B is the mirror image of structure A, then RMSDp(A, B) =0
and RMSDp(C, A) = RMSDy(C, B) for all structures C.
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The two measures are experimentally shown to have a close to linear relation (when
all weights are equal to 1} as RMSDp = p1 x RMSDc 4-p2, where p; &~ (.75 and
02 18 between 0 and 0.2 (Cohen and Sternherg 1980).

9.1.3 Using RMSD as scoring of structure similarities

The problem of pairwise structure comparison is often the problem of finding equiv-
alences with low RMSD value(s). However, several quite different equivalences with
similar scores might be found and which of these equivalences represent the ‘cor-
rect’ sofution is not an easy task to decide. However, one always needs to consider
how many elements were equivalenced, since for random comparisons the expected
RMSD value seems to be proportional to the square root of the number of equiva-
lenced residues. When taking this into consideration, different measures can be used
for evaluating how well two structures can be superposed.

1. Find the equivalence that minimizes the RMSD divided by the square root of
the length of the equivalence: ming RMSD(E (A, B))/./ng, whete ng is the
number of pairs in the equivalence £.

2. Define a threshold L. Find the maximum number of elements that can be super-
posed such that RMSD is less than or equal to L.

3. Define a threshold /. Find the maximum number of elements that can be super-
posed such that the distance between each equivalenced element is less than or
equal to /.

The two last methods are mostly used to improve detection of regions of similar
topology, excluding structurally unrelated regions.

Most scoring schemes for evaluating equivalences between struciure descriptions
contain factors related to the RMSD. Many structure comparison programs give as
output an equivalence and a resulting RMSD even if they do not use RMSD inter-
nally to score equivalences. See Chapter 12 for more discussion of scoring structure
comparison.

9.2 Alternating Superposition and Alignment

The methods using alternating superposition and alignment operate on residue level,
and the goal is to find a ‘best’ alignment for the two structures. An initial equivalence
(a seed) of atoms from each strocture is first given, Ey = (a7, bj). (@i, b ), - - -,
(ai, . bj,). Note that the A superposition is then performed with respect to the equiva-
lence £y using the transformation 7 which minimizes an RMSD measure. Then the
whole siructures are superposed using 7Tg. The distances between all pairs of atoms
(residues) from the two structures (after superposition), can then be used to define a
new scoring matrix Rq, which is used to obtain an alignment Aqg by dynamic program-
ming. Note that usually a scoring matrix gives highest values to *similar’ elements,
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hence a score could be the reciprocal of the distance. Note also that Ry is a position-
dependent scoring matrix: there is a score for every pair of elements (residues) from
Aand B.

A new equivalence £/ of the r equivalences from the alignment with least distances
(using Ro) can then be tound. From this Ty is computed, and thereafter R, as explained
above. This iteration is performed until convergence (E,; 1 = E;) or some maximurm
number of cycles is done. Algorithm 9.1 describes the method and Figure 9.7(a)
illustrates the approach. Note that in an implementation it is not necessary to use a
new variable for each £ ;.

Algorithm 9.1. Alternating superposition and dynamic programming.

Comparing structures A and B by finding a ‘best’ equivalence for them.
const

Pmax maximum number of cycles

Finit initial equivalence

r the number of pairs in the equivalences
var

2 cycle number

R scoring matrix

£, the equivalence of cycle p

T the (minimum) transformation for £,
proc

dist(a;, b;) the distance between residues
score(d) calculate a score from a distance

begin
Ey = Ejpie; p =0
repeat
T := the transformation for RMSDc(E )
A* :=T(A) Superpose A onto B giving A*

Calculate the new scoring matrix:
forall pairs (i, j) do R;; := score(dist(ai*. b)) end
(s, P) = Ag(A, B) DPon (A, B) using R (find path P with score 5}
p=p+1
Pick the r pairs from P with lowest distances in R
Epi=1{lay, bi), ..., (i, b )}
while £, # E,_) and p < piax
end

Example

Let » = 4 and the mitial equivalence be

Fo = {(a1, b2), (a2, ba), (as, b7), (ay, bs)}.
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Figure 9.2 Example of a spatial component of a score of (q;, b;),
the difference of the angles 3, and 4, (remember that three points define a plane).

The transformation for best superposition of (a), az, as, ao) on (b, by, by, bs) is
found, and then used on the whole structure A. The mxn matrix R of all pairwise
distances (after the superposition) is calculated, and used to define the scoring matrix
for a dynamic programming algorithm. Let this result in the best aligniment be

di dp 43 dg — —— ds5 4dg d7 ag dg
w—by b2 by by bs bg — b7 — by

An equivalence with six pairs is defined by this alignment, and taking the four (r)
of them with smallest distances (using Ry) might result in the equivalence

Ey = {{a3, ), (as. bs), (a7, b7), (a9, bg)}.

This is the equivatence used in the next cycle. A

The initial seed equivalence is critical to the final result, therefore several initial
seeds should be tried. As explained in Section 9.1.3, the final results can be quite
different while still giving similar quality measures (RMSD and/or number of aligned
residues).

In the presentation we have used r as a constant, instead it could be, for example,
the number of pairs (a] . bj,) on P for which the distances R;; are below a given limit
(af are the positions of the atoms of A after superposition). In this way only pairs
whitch superpose well are used in the next cycle, hopelully giving faster convergence.
However, there is no reason for saying that this is always for the best, so both options
should be available.

The scoring of (4, #;) for making the scoring matrix can be changed to include.
several components, €.g. a sequence component and a local structore component. The
sequence compoenent might reflect the similarity between the amino acid types of
the two residues (e.g. using a PAM matrix) and the local structure component might
reflect, for example, the spatial similarity between (a; 1, ¢, a;11) and (b; 1, b;,
bj+1). The spatial similarity can, for example, be measured by the difference between
two angles, as shown in Figure 9.2,

The method of performing alternating superposition and alignment is also uscd for
refining (postprocessing) the results found by other methods, mostly methods using
coarse level description.
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Figure 9.3 Application of the double dynamic programming method. (a), (b) Two of the 56
low-level scoring matrices are shown. The expression used for low-level scores gives the value
of 250 ¥ 8;;. The best (DP) paths using the scoring matrices and 4 linear gap penalty with
g = 4 are shown by broken and dotted lines, respectively. (¢) The low-level scores for the two
optimal paths are summed up in the high-level scoring matrix.

9.3 Double Dynamic Programming

As explained earlier, traditional dynamic programming cannot alone be used for align-
ing structures. Since any choice to align two substructures will affect the scoring of
the alignment of the complete structures, the independence requirement is violated
and DP can no longer guarantee an optimal solution. But if one assumes that the
structures are already superposed, reasonable scoring schemes can be devised which
allow the structures to be aligned optimally using DP (Section 9.2). However, ide-
ally, one might wish to simultaneously align and superpose the structures to optimize
a score depending on how well-aligned substructures superpose. Here we describe
one method using this approach, the structure sequence alignment program (SSAP)
program (developed by Taylor and Orengo (1989)). This is based on a method called
double dynamic programming (DDP). The main idea is to use two levels of dynamic
programming, constructing a final scoring matrix that can be used on the high level for
finding the (best) alignment between the two structures by an ordinary DP algorithm.

Conceptually, the method looks at each residue pair (@;, b}, and for each it tries to
find how likely it is that this pair ts in an optimal alignment. A heuristic for this is to
find an optimal alignment under the constraint that (¢, &;) is part of the alignment,
and to define a (low-level) posirion-dependent scoring matrix under this constraint, In
the DDP context this is called a low-level DP, and the scoring matrix uses a low-leve!
scoring matrix. For each pair (i, j} there will be defined a separate (low-level) scoring
matrix, denoted ¥ §. The matrix element ¥ §;; will get a number (score) showing how
well the residue ay, fits to &; under the constraint that a; is aligned with 5;. Note that
these scoring matrices define scores between all pairs of residues, not betwcen amino
acids.
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To force the (low-level) alignment to go through (a;, #;), the ordinary DP algorithm
can then be used, either by finding an optimal path from (a;, b;) to {a;. b)) and
from (a;, #;) to (am, b,), or by giving the score of (a;, ;) so high a value that the
optimal path is forced to go through it. Since we assume that @; matches b, it is
only necessary to calculate the scores of VS, for (1 < k < i, 1 < { < j) and
(i <k <m, j<I[< n)/(thatis, the top left and bottom right of ¥/ Sii).

The results from all low-level computations are ‘summed up’ in a high-level scor-
ing matrix * S, and final (high-level) dynamic programming is done using # 5. The
summing is done by letting the contribution from the low-level matrix “/ S be all ¥/ S ,,,
such that (a,. by ) lies on the optimal (low-level) path when '/ § is used as the scoring
matrix. In this way the highest-scoring path from each low-level DP matrix is prop-
agated to the high-level ‘summary’ scoring matrix. The procedure is illustrated in
Figure 9.3, and given in Algorithm 9.2. Note that Figure 9.3 shows scoring matrices,
not the ‘DP matrices’.

Algorithm 9.2. Double dynamic programming.

Aligning the structures A and B using DDP
begin
" = [O}mxn Set high-level scoring matrix to zero
for each pair (a;, b;) do
Create the low-level scoring matrix ¥ §

(5. P) = DP;}S(A, B) Low-level D¥, forced through (a;, ;) -
forall (a,, by) € P do Accumulate from path P
HSpg(P) = §,,(P) 4+ S,,(P)
end
end
(s, P) :=DPrg(A. B} High-level DP using H S, best pathin P

end

As #§ contains a sum of values from tow-level matrices, it might contain large
values, and before the high-level computation is performed, the values are normalized
or their logarithmic values are used.

4§ is constructed as the sum of values from mn low-level matrices, most of them
representing pairs which are not in the final alignment. There is a general background
or random score associated with the comparison with every dissimilar pair, and to
damp this noise it should be removed from the accumulation. One way is to define a
cut-off on the score of the low-level alignment and accumulate the scores only from
alignments above this cut-off.

Different versions of DDP can be developed, depending, for example, on how the
low-level scoring matrices are calculated and which sequence and structure properties
are used. Examples are given in the following sections.
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A B

Figure 9.4 Calculation of a low-level scoring matrix ¥/ 5 in double dynamic programming.
Two structures A and B are shown schematically, and local coordinate frames are derived from
local geometry al a; and b, respectively. The structures are then translated and rotated such
that the coordinate frames coincide (right). The scoring 7 8; can then be found simply as a
function of the distance between a; and b; shown as dg; or as a more complex function.

9.3.1 Low-level scoring matrices

There are mn low-level scoring matrices */ §. All methods for calculating ™/ Sg; (show-
ing how good ay fits &y when a; is aligned to b ;) should calculate a superposition of
the two structures A and B bond on the choice of { and j. One way of defining the
scores is to first define local reference systems at @; and at b;, e.g. by using (the C,, of)
ai—1,a;, aiy and b;_y, by, by 1. With three points one can define a unique reference
{coordinate) system (as long as they do not lie on a straight line). The coordinates of
the remaining residues are transformed into the respective coordinate systems. The
score of aligning ay, b; depends on the distance between gy and by in the respective
coordinate systems defined at ¢; and &, as shown in Figure 9.4. One simple scoring
scheme is to use a function of the distance between a; and b;.
A more comprehensive scoring scheme could also take into account.

o A direction component, the difference in the direction of the vectors (a,, az)
and (b}, b;) (see Figure 9.4).

o An orientation component ;. A local reference frame can also be constructed
for a; and by (using the neighbouring residues, as above), after the structures
have been transformed to coincident reference frames at ¢; and & ;. This compo-
nent reflects the difference in the reference frames at a; and by, and is measured
by the angle between corresponding axes at ag and by,

e A sequence distance component gy, calculated as an increasing function of
|k — i| + |I — j|. This component should damp the contribution from near
neighbours in the sequence (as the matching of local secondary structures).
The reason for this component is that the structural similarity at a; and b; tends
to be higher when they are near ¢; and b; in sequence, and we want all pairs {0
have ‘equal sequential significance’ (having a global view).
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Figure 9.5 The Gaussian function for different values of x and y.
We see that the decrease of §.{x, ¥) 18 highest for low y,

e A spatial distance component Ay, calculated as a decreasing function of iy +
d 1. where dy, is the distance between the (the C,, of) a; and a. This will damp
the contribution from combined large distances in space.

The two last components together give high weight to residues which are near in
space but not near in sequence (i.e. candidates for being in a site around o5 ).

Combining the components: Gaussian transform function

The low-level scoring matrices are constructed as a combinalion of several compo-
nents. Often the score of a component should be the inverse of a measured value, and
also some normalization should be done, e.g. in some cases where the measured value
is a distance, and we want to use similarity. One such decreasing and nornralizing
function (all values being in the interval [(),1] for nonnegative x and v) is the Gaussian
transform function:

§x, ») = exp(=x7/107), (9.5)

where x is the measured value which is to be used in a scoring function and y is a
(different) constant for each component, defining the slope of § (see Figure 9.5). The
final scoring value “/ S; is the product of all the components after transformations.
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9.3.2 High-level scoring matrix

The accumulated sums in the high-level matrix could be large, and the logarithms of
the sums are used as the scoring values. A linear gap penalty is used. The variation of
the values of the scoring matrix is high, with a large difference between *good’ and
‘bad’” pairs. A typical alignment will not have gaps in the ‘good’ regions.

9.3.3 Iterated double dynamic programming

As DDP is a heuristic, one might achieve better results by iteration-—doing a DDP in
each cycle. This, together with an idea of how to limit the work for each DDP cycle,
is developed into a program called the structure alignment program (SAP).

The DDP algorithm described above requires a computation {ime proportional to
the fourth power of the sequence length (for two proteins of equal length) as it performs
an alignment for all residue pairs. To circumvent this severe requirement, some simple
heuristics are devised based on the principle that comparing the environment of all
residue pairs is not necessary. Thus some pairs, together referred to as the seed, are
chosen before the first cycle. Low-level matrices are only constructed for the pairs in
the seed, and used for the DDP algorithm in the first cycle. In each cycle the high-
level scoring matrix is updated, and the pairs are also selected anew for the next cycle.
The overall algorithm is shown in Algorithm 9.3. Two high-level matrices are used:
1§ as hefore, and a bias matrix Q. The reason for this will be explained below. In
the algorithm a high-level DP is performed in each cycle; this is for the termination
criterion.

Algorithm 9.3, Iterated double dynamic programming,.
Aligning the structures A and B by iterated DDP

var
o the high-level bias scoring matrix
E the equivalence used in each cycle
hegin

initialize the bias matrix Q
E = the seed
repeat
He = [0y xn Set high-level scoring matrix to zero
Calculate the high-level scoring matrix # §:
for each pair (ij) € E do
(s, P) == DP}, s (A, BY Low-level DP forced through (a;. b;)
accumulate the low-level result in 7 §
end
update Q using old (O and Hg
(s, P):=DPp(A, B) High-level DP
E = select new pairs based on ()
until termination criterion is satisfied
end
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Several of the statements in Algorithm 9.3 have to be described in more detail.
¢ How is ( initialized and the seed selected?
e How many residue pairs should be selected in each cycle, and how?
¢ How should Q be updated?
¢ Should the high-level scoring matrix contribute to the low-level matrices?

o What is the termination criterion?

Initialization

Based on focal structure and environment, many residue pairs (indeed most) can be
neglected. This selection can be made on secondary structure state (one would not
normally want to compare an alpha-helix with a beta-strand and burtal (those with
a similar degree of burial are most similar) but a component based on the amino
acid identity can also be used, giving any sequence similarity a chance to contribute.
Contributions from all three components are combined for each pair of positions as a
product (to ensure that all three have a reasonable value) giving a matrix (0, which is
referred to as the “bias matrix’ ( Q is thus determined by use of the three components).
No specific weights are introduced, instead the § transtorm is used to give a roughly
equal contribution and taking their product makes the size of the component ranges
less critical.

The seed can be selected by taking the pairs with highest values in (), or, for
example, using methods for discovering common sites in the structures, e.g. SPratt
(see Chapter 13.3).

Selecting pairs and updating @

The highest values in O for each cycle are used for selecting the pairs to be used in the
low-level computation. First a relatively small number of pairs is selected (10-20),
but the number is gradually increased with each cycle, as hopefully more ‘true pairs’
are found. The initial sparse sampling can be unrepresentative of the truly equivalent
pairs. To maintain a continuity through the early sparse cycles (hopefully towards the
true equivalence) ) is used as a base for incremental revision (the bias matrix). If
(7 is the bias matrix on cycle p, then the next revision is caiculated as

Ol = 0P 12 +Tog(1 + " $PF1 20, (9.6}

where S is the matrix as defined for SSAP formed from the summed traces from all
the low-level comparisons. The scores in the high-level matrix (¥ §) are generally large
but the logarithmic damping reduces these into a range with an effective maximum
of 1, which is more commensurate with the range of values found in the bias matrix
(Q).

To further ensure that the bias matrix does not become dominated by extreme
values, its elements are normalized on each cycle.
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Figure 9.6 Illustration of the selection procedure and stop criterion for the iterated DDP
method. The figure shows the selected pairs in cycle p, when the number of pairs is five
(shaded). It also shows the best alignment (by the broken line) for cycle p + 1, hence four
of the five selected pairs are on this path (7 = 5, & = £). If all five lay on the alignment the
iteration would have converged (and could be terminated).

This torm of updating weakens the contribution from the initial Q for eachiteration
cycle, making the selection of pairs become increasingly determined by the dominant
alignment, approaching (or atlaining) by the final cycle a self-consistent state in
which the alignment has been calculated predominantly (or completely) from pairs
of residues that lie on the alignment.

The increasing number of pairs selecled can be determined by the following func-
tion of the size of the two proteins (m and r) and the cycle number (p):

1
K=104+ %«/ﬁm 9.7)

(p = 0 for the initial cycle). We see that the number of selected pairs can be larger
than the length of the sequences, bui this is taken carc of in the stop criterion. See
Figure 9.6 for an illustration of the selection.

Achieving coherence hetween the levels

The initial selection of residue pairs might be quite random with respect to the final set
of ‘rue’ equivalences and, as a consequence, the comparison of their environments
might provide little coherent direction towards the final solution. Although the bias
matriz provides a platform from which the selection of pairs can be refined, it has no
effect on the scores derived from the low-level matrices. A contribution from the bias
matrix as described above can therefore be introduced at this level (o provide stability
into the early cycles. This is done by adding a contribution from the bias matrix to
the low-level matrix that decreases with increasing cycle number. Therefore, instead
of using *§ as explained in Section 9.3.1, a revised matrix ‘¥ §* is used:

kgx 2§ 4 QP - 4(p, 1), (9.8)
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were p is the cycle number and § is the Gaussian transform. On the initial cycle the
bias matrix has a fall contribution (§.(0, 1) = 1), which decreases until after the fifth
cycle there is effectively no contribution from the bias matrix (§.(5, 1) = 0.082). This
provides a smooth transition from the, initially, local information in the bias matrix
into the full global view provided by the comparison of the residue environments.

Termination criterion

The iteration should stop when the selected pairs in cycle p coincide with the best
(high-level) path in cycle p + 1. Let r be the number of selected pairs at cycle p.
Then a new © is calculated, and the best path found. Let u of the selected pairs lay
on this path. Then

k=12

I

can be used as stop criterion, as illustrated in Figure 9.6. f £ becomes 1, the iteration
stops. However, if the number of selected pairs is more than the length of the true
alignment, then & = | can never be attained so the iteration can also terminate if &
stops to increase. In addition, an upper limit for the number of cycles should exist
(typically 5-10).

9.4 Similarity of the Methods

SAP and the methods using alternating superposition and alignment can both be
looked upon as two-level methods. While the latter methods find the DP matrix using
an optimal superposition for the current equivalence, SAP does not need to decide (or
assume) one exact alignment to calculate the higher-level scoring matrix. Instead the
residues pairs that participate in high-scoring low-level alignments receive high values
in the high-level scoring matrix and are likely to be included in the final alignment
(see Figure 9.7(b)).

9.5 Exercises

1. Regard two ‘structures’ (A, B) of three atoms in 2D space, defining an equiv-
alence of three pairs:

A: {(1,4)(4,1){4,4)
B: (0,0)(2,0)(3,2)

(a) Calculate RMSDp.

(b) Calculate the geometrical centres of the ‘structures’. Then move the “struc-
tures’ so that the geometrical centres are at the origin. Find the new coor-
dinates of the points, and plot them in a diagram.
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Figure 9.7 (a) Outline of algorithm alternating between alignment and superposition. (b)
Outline of the SAP method. Reproduced from Eidhammer et al. (2000) by permission of Mary
Ann Liebert.
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(c) Calculate RMSD¢ (weight 1) for the ‘structures’ as they are, without
rotation.

(d) Look at the ‘structures’. Do you think you can find alower RMSDc value
by rotating one of the ‘structures’?

2. This exercise is to illustrate the method of alternating superposition and align-
ment for finding the best alignment. For simplicity, we consider ‘siructures’ in
2D space. Consider the structures

A =(ay,a, a3, aay and B = (b, bz, b3, by, bs).

Let the position of (atoms representing) the residues be

aps (2, —-0.414), by (1.2, -2),
az. (—0.121,0.293), by (1.8,1.2),
asy:  (1.293,3.121), by (0.2, -0.4),
as: (4.828.1), by (—1.4, =0.6),
bs: (—1.8,1.8).

(2) Calculate the geometrical centres, and find the coordinates of the atoms
when both are moved so that the geometrical centres are at the origin.
{Control: the coordinates for & should be (0, —1.414).)

(b) Assume an initial equivalence (subalignment): {az, b1){a3, ba){a4, ba).
Assume further that the rotation matrix for minimum RMSD¢ for this is

-1/1.414 1/1.414
1/1.414 1/1.414

(i} Show that the matrix is orthogonal.

(i} Rotate all the coordinates of A, and calculate the new coordinates.
(Control: the new coordinates of @) should be (—1, —1).)

(¢) Define a distance matrix D for all pairs (a], b;), where a is the coordi-
nates after rotation.

(d) Define a scoring matrix R by dividing 1 by the distances in IJ); use one
decimal. Use R to find the best alignment for A, B when R is used. Use
a linear gap penalty, where the penalty for ene blank is the average of the
values in R which are less than 1.

(e) Now find the highest-scoring equivalence {subalignment} of length 3.

3. This exercise is to illustrate double dynamic programming. Consider the ‘struc-
tures’ A = {a,, a2, a3, aq) and B = {b1, b2, b3, ba, bs) in 2D space. To define
a coordinate system for ¢;, choose origin in a; and the x-uxis through a; 1. First
choose the pair (az, b3) for low-level dynamic programming. The coordinate
in this system are {ound to be
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A (-1,2), (0,0, (2,0), (1,1)
B: (_211)1 (_lll)l (OIO)I (110).' (012)

{a) Fill in a distance matrix D for all pairs from A, B, and define a low-level
scoring matrix >3 §, by dividing 1 by the distances in D (to one decimal).
Let the score for (az, b3) be the double of the highest score. Use a lincar
gap penalty, and let the gap penalty for one blank be the average of the
values in >?§, when (a2, b3) is not counted, Perform low-level dynamic
programming.

{(b) Choose (a3, b3) for the new low-level matrix. B will have the same coor-
dinates as in (a). To find the new coordinates for (A), vou can use the
following procedure. Let

o X and ¥ be the x- and y-axes of the original coordinate system,

e X' and ¥’ be the x- and y-axes of the coordinate system with origin

at a3 (and x-axis along aq),

e ¢ be the angle between X and X',

® g1 = a3x (the x-coordinate of as),

e g2 = a3y (the y-coordinate of a3),

* g1 = cos(X, X'} = cos(¢),

e g1o = cos(X, Y) = cos(90 + ¢),

» 271 = cos(¥, X} = cos(90 — ¢),

o g7 = cos{¥, ¥') = cos(¢h).
If (x, ¥) are the coordinates of a point in the original coordinate system,
then the coordinates (x', ¥") in the new coordinate system become

o X' =gulx —gi)+galy — g2,
oy =gulx —g1) + g0y — g2).
Youmay want to draw a diagram with the coordinate systems for verifying
the new coordinates you get. Then define a scoring matrix and perform
dynamic programming as explained in (a).
{¢) Make the high-level scoring matrix using the two low-level ones, and
perform dynamic programming.

(d) Compare the three alignments, and comment the choice of pairs when
only two are chosen.

4. When choosing the pairs for the next cycle in double dynamic programming,
there is no test for inconsistencies among the pairs (one residue in A could be
in two or more pairs). Discuss whether this should have been done.

5. Equation (9.6) shows how the bias matrix  is updated. Now assume that a
cell in the high-level scoring matrix 7§ in every cycle is calculated to a fixed
value K, such that K = log(1 + 7§2+1/20).
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(2) Show that when p approaches infinity, the value of the corresponding
cell of @ approaches 2K . Hint: write the equation as gt =¢#/24+ K
{where g7 is the value of the corresponding cell in cycle p). Then find an
expression for ¢#*! depending on K and q".

(b) Let qU = 0.5. Find the value of g3 when (i) K = 0.2 and (ii) K = 0.8.

9.6 Bibliographic notes

Fundamental articles for superposition are McLachlan (1972, 1979), Kabsch (1978)
and Cohen and Sternberg (1980).

More about the methods of alternating superposition and alignment can be found
in Rao and Rossmann (1973), Rossmann and Argos (1975, 1976), Satow et al. (1986),
Cohen (1997), Russel and Barton (1992), Ding et al. {1994), Holm and Sander (1993},
Zu-Kang and Sippl (1996), Petitjcan (1998) and Gerstein and Levitt (1998),

Double dynamic programming in the program SSAP is described in Taylor and
Orengo (1989). An early iterative version is described in Orengo and Taylor (1990),
while the algorithm above is described in Taylor (1997a, 1999a).

10

Geometric Techniques

A number of structure comparison methods use geometric technigues to find similar
substructures between the structures. Such substructures can subsequently be used ina
clustering method and combined into larger equivalences, as described in Chapter 11.
In this chapter we focus on the first step, and we consider geometric hashing and
distance-based techniques.

10.1 Geometric Hashing

Geometric hashing was originally developed as a computer vision technique for
matching geometric features. ITn order to explain the principles, we first describe the
basic ideas using two-dimensional geometric figures, and then show how geometric
hashing is used for structure comparison.

10.1.1 Two-dimensional geometric hashing

Assume we have two two-dimensional geometric figures, a model A, and a guery B,
described by m and n points, respectively. The task is to discover common subfigures,
invariant under both rotation and translation (rigid-body transformation, scale could
also easily be included, but this will not be dealt with here since all structures are
usually given in the same scale). One approach is to try to ‘place the query on top
of the model’, and consider how many points coincide (ignoring the edges). This is
illustrated in Figure 10.1, where six points coincide under a given threshold for point
coincidence, meaning that the distance between points that coincide is less than the
threshold.

Finding this maximal coincidence set is NP-hard. In addition we might not only
want to find the maximal coincidence, but all coincidences with the number of points
over a given threshold. Geometric hashing is a technique used for this problem. The
geometric hashing technique defines coordinate systems, called reference frames, in
both A and B, using, for example, two figure points for each frame (in the 2D case).
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