Creating a Recursive Spectral Bisection Using Lanczos Algorithm

Brigham Young University, CS 584
Fall 2000

Computing the Second Eigenvalue and Vector

Given a graph G with nodes $n = 4$,

$$
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}

\begin{array}{ccc}
0 & 1 & 2 \\
1 & 2 & -1 & -1 \\
2 & -1 & 2 & -1 \\
3 & -1 & -1 & 1
\end{array}

the LaPlacian matrix $L(G)$ is computed by $D(G) - A(G)$.

$$
\text{LaPlacian matrix } L(G) =
\begin{bmatrix}
0 & 1 & 2 & 3 \\
0 & 2 & -1 & -1 \\
1 & -1 & 2 & -1 \\
2 & -1 & -1 & 1
\end{bmatrix}

\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}

\begin{array}{ccc}
0 & 1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
3 & 1
\end{array}

\text{degree matrix } D(G) \quad \text{adjacency matrix } A(G)
$$

Spectral bisection uses the eigenvector (v_2) associated with the second eigenvalue (λ_2) to split G. Therefore, we must compute λ_2 and v_2. We determined the following values by brute force.

$$
\lambda = 0, 1, 3, 4 \quad \lambda_2 = 1 \quad v_2 = \langle -\frac{1}{2}, -\frac{1}{2}, 0, 1 \rangle
$$

Spectral Bisection simply specifies that for each element j in v_2, if $v_{2,j} < 0$,
place node \(j \) in partition A and if \(v_{2j} \geq 0 \), place node \(j \) in partition B. The algorithm is then applied recursively \(m \) times to each partition to achieve a partitioning into \(2^m \) partitions. This yields the partitioning

For graphs larger than \(G \), solving for the exact value of \(\lambda_2 \) by brute force becomes computationally intensive. A better choice is to approximate \(\lambda_2 \) and \(v_2 \) using Lanczos algorithm.

Lanczos algorithm is a heuristic for finding eigenvalues. Because we are only interested in the sign of each element in \(v_2 \), and because the spectral bisection is only a heuristic itself, Lanczos will yield an acceptable approximation of the eigenvalues (\(\lambda \)) to bisect the graph. Lanczos approximates the eigenvalues by finding the eigenvalues of a much smaller graph \(T \). \(T \) has the special property that it is \(k \times k \) symmetric and tridiagonal where \(k \ll n \). Lanczos iteratively increases the dimension of \(T \), beginning with \(k = 0 \). At each iteration, the eigenvalues of \(T \) may be computed. These eigenvalues will be an approximation of a subset of the eigenvalues of \(L \). Fortunately, the first eigenvalues to emerge are the largest and smallest. \(\lambda_2 \) will be the second smallest eigenvalue of \(T \) after \(k \) iterations of Lanczos algorithm.

The following is pseudo code for Lanczos algorithm.

<table>
<thead>
<tr>
<th>line</th>
<th>operation</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(k = 0)</td>
<td>the iteration and current dimension of (T)</td>
</tr>
<tr>
<td>2</td>
<td>choose arbitrary vector (r)</td>
<td>length= n</td>
</tr>
<tr>
<td>3</td>
<td>vector (t_0 = O)</td>
<td>length= n</td>
</tr>
<tr>
<td></td>
<td>repeat</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(b_k = norm(r))</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(k = k + 1)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(t_k = r/b_{k-1})</td>
<td>divide each element of (r) by (b_{k-1})</td>
</tr>
<tr>
<td>7</td>
<td>(r = (L(G) \times t_k^T)^T)</td>
<td>vector-matrix multiply</td>
</tr>
<tr>
<td>8</td>
<td>(r = r - (b_{k-1} \ast t_{k-1}))</td>
<td>multiply each element of (t_{k-1}) by (b_{k-1})</td>
</tr>
<tr>
<td>9</td>
<td>(a_k = t_k \cdot r)</td>
<td>dot product of (t_k) and (r)</td>
</tr>
<tr>
<td>10</td>
<td>(r = r - (a_k \ast t_k))</td>
<td>multiply each element of (t_k) by (a_k)</td>
</tr>
<tr>
<td>11</td>
<td>until convergence</td>
<td>as (k \to n), the (\lambda) approach the true (\lambda) of (L). As this happens, the (\lambda) for (T) will change more slowly between iterations.</td>
</tr>
</tbody>
</table>
After each iteration \(i \), the matrix \(T \) is the tridiagonal symmetric matrix:

\[
T = \begin{bmatrix}
a_1 & b_1 & & \\
b_1 & a_2 & b_2 & \\
& b_2 & \ddots & \ddots \\
& & \ddots & a_{k-1} & b_{k-1} \\
& & & b_{k-1} & a_k
\end{bmatrix}
\]

A trace of Lanczos for the above graph \(G \) and LaPlacian matrix \(L(G) \):

<table>
<thead>
<tr>
<th>line</th>
<th>(k)</th>
<th>operation</th>
<th>variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>(r = \text{<random>})</td>
<td>(r = <1, -1, 1, -1>)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(t = O)</td>
<td>(t_0 = <0, 0, 0, 0>)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(b_0 = \sqrt{1^2 + (-1)^2 + 1^2 + (-1)^2})</td>
<td>(b_0 = 2)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(k = k + 1)</td>
<td>(k = 1)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(t_1 = \frac{<1,-1,1,-1>}{2})</td>
<td>(t_1 = \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>(r = (L(G) \times \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})^\top)</td>
<td>(r = <1, -2, 2, -1>)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>(r = <1, -2, 2, -1> \cdot -(2*<0, 0, 0, 0>))</td>
<td>(r = <1, -2, 2, -1>)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>(a_1 = <\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}> <1, -2, 2, -1>)</td>
<td>(a_1 = 3)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>(r = <1, -2, 2, -1> \cdot -(3*<\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}>))</td>
<td>(r = <\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}>)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(b_1 = \sqrt{(-\frac{1}{2})^2 + (-\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2})</td>
<td>(b_1 = 1)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>(k = k + 1)</td>
<td>(k = 2)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(t_2 = \frac{<\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}>}{2})</td>
<td>(t_2 = <\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}>)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>(r = (L(G) \times \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})^\top)</td>
<td>(r = <-1, -1, 2, 0>)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>(r = <-1, -1, 2, 0> \cdot -(1*<\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}>))</td>
<td>(r = <-\frac{3}{2}, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}>)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>(a_2 = <-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}> <\frac{3}{2}, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}>)</td>
<td>(a_2 = 2)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>(r = <-\frac{3}{2}, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}> \cdot -(2*<\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}>))</td>
<td>(r = <-\frac{1}{2}, 1, \frac{1}{2}, -\frac{1}{2}>)</td>
</tr>
</tbody>
</table>
11 \[T = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}, \lambda \approx 1.4, 3.6 \]

11 \[\lambda \approx 1.4, 3.6 \]

4 \[b_2 = \sqrt{(-\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2 + (-\frac{1}{2})^2} \]

4 \[b_2 = 1 \]

5 \[k = k + 1 \]

6 \[t_3 = \langle -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \rangle \]

6 \[t_3 = \langle -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \rangle \]

7 \[r = (L(G) \times \langle -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \rangle) ^\top \]

7 \[r = \langle 2, 1, 2, -1 \rangle \]

8 \[r = \langle -2, 1, 2, -1 \rangle \]

8 \[r = \langle -2, 1, 2, -1 \rangle \]

8 \[-(1 \times \langle -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \rangle) \]

8 \[\langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

9 \[a_3 = \langle -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \rangle \]

9 \[r = \langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

9 \[\langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

9 \[a_3 = 3 \]

10 \[r = \langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

10 \[r = \langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

10 \[r = \langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

10 \[-(3 \times \langle -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \rangle) \]

10 \[\langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

10 \[\langle -\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \rangle \]

10 \[a_3 = 3 \]

11 \[\lambda \approx 1, 3, 4 \]

11 \[\lambda \approx 1, 3, 4 \]

At this point, our known value for \(\lambda_2 \) has emerged. This was done on a matrix of dimension \(k = n - 1 \). However, as \(n \rightarrow \infty \), the dimension \(k \) of \(T \) becomes approximately 1 order of magnitude smaller than \(n \).

Now, we plug \(\lambda_2 \) back into \(L(G) \) to find \(v_2 \). This, as before, yields \(\langle -\frac{1}{2}, -\frac{1}{2}, 0, 1 \rangle \). If we tried to find \(v_2 \) with respect to \(T \), we would not have each node of \(G \) represented in \(v_2 \).

Again, the partitioning calculated is

![Graph](image-url)