
1

What is OpenCL™?

André Heidekrüger
Sr. System Engineer Graphics, EMAE

Advanced Micro Devices, Inc.

Stream Computing Workshop, 2009
Stockholm, KTH

http://www.amd.com/us-en/
http://www.amd.com/us-en/
http://www.amd.com/us-en/
http://www.amd.com/us-en/

2

Overview

What is OpenCL™?
� Design Goals
� The OpenCL™ Execution Model

What is OpenCL™? (continued)
� The OpenCL™ Platform and Memory Models

Resource Setup
� Setup and Resource Allocation

Kernel Execution
� Execution and Synchronization

Programming with OpenCL™ C
� Language Features
� Built-in Functions

3

Welcome to OpenCL™

With OpenCL™ you can
� Leverage CPUs, GPUs, other processors such as Cell/B.E.

processor and DSPs to accelerate parallel computation
� Get dramatic speedups for computationally intensive applications
� Write accelerated portable code across different devices and

architectures

With AMD’s OpenCL™ you can
�Leverage AMD’s CPUs,and AMD’s GPUs, to accelerate parallel
computation

4

OpenCL™ Execution Model

Kernel
� Basic unit of executable code - similar to a C function
� Data-parallel or task-parallel

Program
� Collection of kernels and other functions
� Analogous to a dynamic library

Applications queue kernel execution instances
� Queued in-order
� Executed in-order or out-of-order

5

Expressing Data-Parallelism in OpenCL™

Define N-dimensional computation domain (N = 1, 2 or 3)
� Each independent element of execution in N-D domain is

called a work-item
� The N-D domain defines the total number of work-items that

execute in parallel
E.g., process a 1024 x 1024 image: Global problem dimensions:
1024 x 1024 = 1 kernel execution per pixel: 1,048,576 total
executions

void

scalar_mul(int n,

const float *a,

const float *b,

float *result)

{

int i;

for (i=0; i<n; i++)

result[i] = a[i] * b[i];

}

Scalar

kernel void

dp_mul(global const float *a,

global const float *b,

global float *result)

{

int id = get_global_id(0);

result[id] = a[id] * b[id];

}

// execute dp_mul over “n” work-items

Data-Parallel

6

Expressing Data-Parallelism in OpenCL™

Kernels executed across a global domain of work-items
� Global dimensions define the range of computation
� One work-item per computation, executed in parallel

Work-items are grouped in local workgroups
� Local dimensions define the size of the workgroups
� Executed together on one device
� Share local memory and synchronization

Caveats
� Global work-items must be independent: No global

synchronization
� Synchronization can be done within a workgroup

7

Global and Local Dimensions

Global Dimensions: 1024 x 1024 (whole problem space)

Local Dimensions: 128 x 128 (executed together)

1024

10
24

Synchronization between
work-items possible only
within workgroups:
barriers and memory
fences

Can not synchronize
outside of a workgroup

8

Example Problem Dimensions

1D: 1 million elements in an array:
global_dim[3] = {1000000,1,1};

2D: 1920 x 1200 HD video frame, 2.3M pixels:
global_dim[3] = {1920, 1200, 1};

3D: 256 x 256 x 256 volume, 16.7M voxels:
global_dim[3] = {256, 256, 256};

Choose the dimensions that are “best” for your algorithm
� Maps well
� Performs well

9

Synchronization Within Work-Items

No global synchronization, only within workgroups
The work-items in each workgroup can:
� Use barriers to synchronize execution
� Use memory fences to synchronize memory accesses

You must adapt your algorithm to only require
synchronization
�Within workgroups (e.g., reduction)
� Between kernels (e.g., multi-pass)

10

Part 2: What is OpenCL™? (continued)

The OpenCL™ Platform and Memory Models

11

Global and Local Dimensions

Global Dimensions: 1024 x 1024 (whole problem space)

Local Dimensions: 128 x 128 (executed together)

1024

10
24

Synchronization between
work-items possible only
within workgroups:
barriers and memory
fences

Can not synchronize
outside of a workgroup

12

OpenCL™ Platform Model

A host connected to one or more OpenCL™ devices
OpenCL™ devices:
� A collection of one or more compute units (cores)
� A compute unit

– Composed of one or more processing elements
– Processing elements execute code as SIMD or SPMD

Host

OpenCL™ Compute Device

Processing Element

Compute Unit

13

Compute Device

Workgroup Workgroup

Host

OpenCL™ Memory Model

Work-
Item

Work-
Item

Work-
Item

Work-
Item

Private
Memory

Private
Memory

Private
Memory

Private
Memory • Private Memory: Per

work-item

Local MemoryLocal Memory
• Local Memory: Shared

within a workgroup

Global/Constant Memory • Local Global/Constant
Memory: Not synchronized

Host Memory • Host Memory: On the
CPU

Memory management is explicit
You must move data from host to global to local and back

14

OpenCL™ Objects

Setup
� Devices—GPU, CPU, Cell/B.E.
� Contexts—Collection of devices
� Queues—Submit work to the device

Memory
� Buffers—Blocks of memory
� Images—2D or 3D formatted images

Execution
� Programs—Collections of kernels
� Kernels—Argument/execution instances

Synchronization/profiling
� Events

Queue

Context

Queue

15

OpenCL™ Framework

Context

Images

Memory Objects

Buffers

Command Queues

In
Order
Queue

Out
Order
Queue

dp_mul
CPU program

binary

dp_mul
GPU program

binary

Programs

__kernel void
dp_mul(__global const float *a,

__global const float *b,
__global float *c)

{
int id = get_global_id(0);
c[id] = a[id] * b[id];

}

dp_mul

arg [0] value

arg [1] value

arg [2] value

Kernels

16

Part 3: Resource Setup

� Setup and Resource Allocation
.

http://www.amd.com/us-en/

17

OpenCL™ Framework

Context

Images

Memory Objects

Buffers

Command Queues

In
Order
Queue

Out
Order
Queue

dp_mul
CPU program

binary

dp_mul
GPU program

binary

Programs

__kernel void
dp_mul(__global const float *a,

__global const float *b,
__global float *c)

{
int id = get_global_id(0);
c[id] = a[id] * b[id];

}

dp_mul

arg [0] value

arg [1] value

arg [2] value

Kernels

18

Get the device(s)
Create a context
Create command queue(s)

cl_uint num_devices_returned;

cl_device_id devices[2];

err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 1,

&devices[0], num_devices_returned);

err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 1,

&devices[1], &num_devices_returned);

cl_context context;

context = clCreateContext(0, 2, devices, NULL, NULL, &err);

cl_command_queue queue_gpu, queue_cpu;

queue_gpu = clCreateCommandQueue(context, devices[0], 0, &err);

queue_cpu = clCreateCommandQueue(context, devices[1], 0, &err);

Setup

Queue

Context

Queue

19

Setup: Notes

Devices
� Multiple cores on CPU or GPU together are a single

device
� OpenCL™ executes kernels across all cores in a data-

parallel manner
Contexts
� Enable sharing of memory between devices
� To share between devices, both devices must be in the

same context
Queues
� All work submitted through queues
� Each device must have a queue

20

Choosing Devices

A system may have several devices—which is best?
The “best” device is algorithm- and hardware-dependent

Query device info with: clGetDeviceInfo(device, param_name, *value)
� Number of compute units CL_DEVICE_MAX_COMPUTE_UNITS

� Clock frequency CL_DEVICE_MAX_CLOCK_FREQUENCY

� Memory size CL_DEVICE_GLOBAL_MEM_SIZE

� Extensions (double precision, atomics, etc.)

Pick the best device for your algorithm
� Sometimes CPU is better, other times GPU is better

21

Memory Resources

Buffers
� Simple chunks of memory
� Kernels can access however they like (array, pointers,

structs)
� Kernels can read and write buffers

Images
� Opaque 2D or 3D formatted data structures
� Kernels access only via read_image() and write_image()
� Each image can be read or written in a kernel, but not

both

22

Image Formats and Samplers

Formats
� Channel orders: CL_A, CL_RG, CL_RGB, CL_RGBA, etc.
� Channel data type: CL_UNORM_INT8, CL_FLOAT, etc.
� clGetSupportedImageFormats() returns supported formats

Samplers (for reading images)
� Filter mode: linear or nearest
� Addressing: clamp, clamp-to-edge, repeat, or none
� Normalized: true or false

Benefit from image access hardware on GPUs

23

cl_image_format format;

format.image_channel_data_type = CL_FLOAT;

format.image_channel_order = CL_RGBA;

cl_mem input_image;

input_image = clCreateImage2D(context, CL_MEM_READ_ONLY, &format,

image_width, image_height, 0, NULL, &err);
cl_mem output_image;

output_image = clCreateImage2D(context, CL_MEM_WRITE_ONLY, &format,

image_width, image_height, 0, NULL, &err);

cl_mem input_buffer;

input_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY,

sizeof(cl_float)*4*image_width*image_height, NULL, &err);
cl_mem output_buffer;

output_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*4*image_width*image_height, NULL, &err);

Allocating Images and Buffers

24

Reading and Writing Memory Object Data

Explicit commands to access memory object data
� Read from a region in memory object to host memory

– clEnqueueReadBuffer(queue, object, blocking, offset, size,

*ptr, ...)

� Write to a region in memory object from host memory
– clEnqueueWriteBuffer(queue, object, blocking, offset, size,

*ptr, ...)

� Map a region in memory object to host address space
– clEnqueueMapBuffer(queue, object, blocking, flags, offset,

size, ...)

� Copy regions of memory objects
– clEnqueueCopyBuffer(queue, srcobj, dstobj, src_offset,

dst_offset, ...)

Operate synchronously (blocking = CL_TRUE) or asynchronously

25

Introduction to OpenCL™: part 4

� Execution and Synchronization

26

Program and Kernel Objects

Program objects encapsulate
� A program source or binary
� List of devices and latest successfully built executable

for each device
� A list of kernel objects

Kernel objects encapsulate
� A specific kernel function in a program

–Declared with the kernel qualifier
� Argument values
� Kernel objects can only be created after the program

executable has been built

27

Program

Compile for
GPU

GPU
cod
e

Compile for
CPU

x86
cod
e

kernel void
horizontal_reflect(read_only image2d_t src,

write_only image2d_t dst)
{
int x = get_global_id(0); // x-coord int y = get_global_id(1); // y-coord

int width = get_image_width(src); float4 src_val = read_imagef(src,
sampler,

(int2)(width-1-x, y)); write_imagef(dst, (int2)(x, y), src_val);
}

Kernel Code

Programs build executable code for multiple devices

Execute the same code on different devices

28

Compiling Kernels

Create a program
� Input: String (source code) or precompiled binary
� Analogous to a dynamic library: A collection of kernels

Compile the program
� Specify the devices for which kernels should be compiled
� Pass in compiler flags
� Check for compilation/build errors

Create the kernels
� Returns a kernel object used to hold arguments for a

given execution

29

File: kernels.cl
// ---------------------------------
// Images Kernel
// ---------------------------------
kernel average_images(read_only image2d_t input, write_only image2d_t output)
{

sampler_t sampler = CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST | CLK_NORMALIZED_COORDS_FALSE;
int x = get_global_id(0);
int y = get_global_id(1);
float4 sum = (float4)0.0f;

int2 pixel;
for (pixel.x=x-SIZE; pixel.x<=x+SIZE; pixel.x++)

for (pixel.y=y-SIZE; pixel.y<=y+SIZE; pixel.y++)
sum += read_imagef(input, sampler, pixel);

write_imagef(output, (int2)(x, y), sum/TOTAL);
};

Creating a Program

cl_program program;
program = clCreateProgramWithSource(context, 1, &source, NULL, &err);

30

Compiling and Creating a Kernel

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

if (err) {
char log[10240] = "";
err = clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,

sizeof(log), log, NULL);
printf("Program build log:\n%s\n", log);

}

kernel = clCreateKernel(program, "average_images", &err);

31

size_t global[3] = {image_width, image_height, 0};
err = clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global, NULL, 0, NULL, NULL);

•Note: Your kernel is executed asynchronously
Ŷ Nothing may happen—you have only enqueued

your kernel
Ŷ Use a blocking read clEnqueueRead*(... CL_TRUE ...)

Ŷ Use events to track the execution status

Executing Kernels

Set the kernel arguments
Enqueue the kernel

err = clSetKernelArg(kernel, 0, sizeof(input), &input);
err = clSetKernelArg(kernel, 1, sizeof(output), &output);

32

Synchronization Between Commands

33

Synchronization: One Device/Queue

GPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1

En
qu

eu
e

K
er

ne
l 2

Kernel 2

Time

Kernel 2 waits in the queue until
Kernel 1 is finished.

•Example: Kernel 2 uses the results of Kernel 1

Command Queue

34

Synchronization: Two Devices/Queues

Kernel
1

Kernel
2

GPU CPU

Explicit dependency: Kernel 1 must finish before Kernel 2
starts

Output Input

35

GPU

CPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1
En

qu
eu

e
K

er
ne

l 2

Time

Synchronization: Two Devices/Queues

GPU

CPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1

En
qu

eu
e

K
er

ne
l 2

Kernel 2

Time

Kernel 2

Kernel 2 waits for an
event from Kernel 1, and
does not start until the

results are ready

Kernel 2 starts before the
results from Kernel 1 are

ready

36

Using Events on the Host

clWaitForEvents(num_events, *event_list)

� Blocks until events are complete
clEnqueueMarker(queue, *event)

� Returns an event for a marker that moves through the
queue

clEnqueueWaitForEvents(queue, num_events, *event_list)

� Inserts a “WaitForEvents” into the queue
clGetEventInfo()

� Command type and status
CL_QUEUED, CL_SUBMITTED, CL_RUNNING, CL_COMPLETE, or error code

clGetEventProfilingInfo()

� Command queue, submit, start, and end times

37

Part 5: OpenCL™ C

� Language Features
� Built-in Functions

38

OpenCL™ C Language

Derived from ISO C99
� No standard C99 headers, function pointers, recursion,

variable length arrays, and bit fields
Additions to the language for parallelism
� Work-items and workgroups
� Vector types
� Synchronization

Address space qualifiers
Optimized image access
Built-in functions

Address space

•__global – memory allocated from global address space,
images are global by default
•__constant – is like global, but read only
•__local – memory shared by work-group
•__private – private per work-item memory
•__read_only – only for images
•__write_only – only for images
Kernel args have to be global, constant or local.
Can’t assign to different pointer type.

Workgroups

•uint get_work_dim () (1 to 3)
•size_t get_global_size (uint dimindx)
•size_t get_global_id (uint dimindx)
•size_t get_local_size (uint dimindx)
•size_t get_local_id (uint dimindx)
•size_t get_num_groups (uint dimindx)
•size_t get_group_id (uint dimindx)
num_groups * local_size = global_size
local_id + group_id * local_size = global_id
global_size % local_size = 0

Synchronization

barrier() function. All work-items must reach the barrier
before they execute further. It must be encountered by all
work-items in work-group.
Flags: LOCAL_MEM_FENCE, GLOBAL_MEM_FENCE – flush
and ensure ordering for local or global memory.

mem_fence(), read_mem_fence(), write_mem_fence() –
ensure memory loads and stores ordering within work-item.

42

get_global_id(0)

Kernel

kernel void square(__global float* input,

__global float* output)

{

int i = get_global_id(0);

output[i] = input[i] * input[i];

}

36 1 1 0 81 4 16 1 1 81 49 1 4 4 1 81 64 16 1 81 4 0 0 49 64

input

output 36

i==11

6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8

43

Work-Items and Workgroup Functions

input

get_global_size 26

get_work_dim

1

get_local_size 13

get_local_id 8
get_global_id 21get_group_id 0

workgroups
get_num_groups 2

6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8

44

Data Types

Scalar data types
� char , uchar, short, ushort, int, uint, long, ulong
� bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void,
� half (storage)

Image types
� image2d_t, image3d_t, sampler_t

Vector data types

45

Data Types

Portable
Vector length of 2, 4, 8, and 16
� char2, ushort4, int8, float16, double2,

Endian safe

Aligned at vector length

Vector operations and built-in functions

46

Vector Operations

• Vector literal
int4 vi0 = (int4) -7;

0 1 2 3
int4 vi1 = (int4)(0, 1, 2, 3);

-7 -7 -7 -7

47

Vector Operations

• Vector literal
int4 vi0 = (int4) -7;

0 1 2 3
int4 vi1 = (int4)(0, 1, 2, 3);

• Vector components
vi0.lo = vi1.hi;

-7 -7 -7 -7

2 3 -7 -7

48

int8 v8 = (int8)(vi0.s0123, vi1.odd); 2 3 -7 -7 0 1 1 3

Vector Operations

• Vector literal
int4 vi0 = (int4) -7;

0 1 2 3
int4 vi1 = (int4)(0, 1, 2, 3);

• Vector components
2 3 -7 -7vi0.lo = vi1.hi;

-7 -7 -7 -7

49

2 3 -7 -7 0 1 1 3

Vector Operations

• Vector literal
int4 vi0 = (int4) -7;

0 1 2 3
int4 vi1 = (int4)(0, 1, 2, 3);

• Vector components
2 3 -7 -7vi0.lo = vi1.hi;

-7 -7 -7 -7

int8 v8 = (int8)(vi0.s0123, vi1.odd);

• Vector ops

2 4 5 42 4 -5 -4

vi0 += vi1;

vi0 = abs(vi0);

+
2 3 -7 -7

0 1 2 3

50

Address Spaces

kernel void distance(global float8* stars, local float8* local_stars)

kernel void sum(private int* p) // Illegal because is uses private

• Kernel pointer arguments must use global, local, or constant

kernel void average(read_only global image_t in, write_only

image2d_t out)

• image2d_t and image3d_t are always in global address
space

• Default address space for arguments and local variables is
private

kernel void smooth(global float* io) {

float temp;

...

51

Address Spaces

• Program (global) variables must be in constant address
space

• Casting between different address spaces is undefined

constant float bigG = 6.67428E-11;

global float time; // Illegal non constant

kernel void force(global float4 mass) { time = 1.7643E18f; }

kernel void calcEMF(global float4* particles) {

global float* particle_ptr = (global float*) particles;

float* private_ptr = (float*) particles; // Undefined behavior -

float particle = * private_ptr; // different address

}

52

Conversions

Scalar and pointer conversions follow C99 rules

• No implicit conversions for vector types
float4 f4 = int4_vec; // Illegal implicit conversion

• No casts for vector types (different semantics for vectors)
float4 f4 = (float4) int4_vec; // Illegal cast

• Casts have other problems
float x;

int i = (int)(x + 0.5f); // Round float to nearest integer

Wrong for:
0.5f - 1 ulp (rounds up not down)
negative numbers (wrong answer)

• There is hardware to do it on nearly every machine

53

Conversions

Explict conversions:
convert_destType<_saturate><_roundingMode>

– Scalar and vector types
– No ambiguity

uchar4 c4 = convert_uchar4_sat_rte(f4);

f4

c4
2552552540

-5.0f 254.5f 254.6 1.2E9f

54

Reinterpret Data: as_typen

Reinterpret the bits to another type
Types must be the same size

// f[i] = f[i] < g[i] ? f[i] : 0.0f

float4 f, g;

int4 is_less = f < g;

f = as_float4(as_int4(f) & is_less);
f

g

as_int

f

OpenCL™ provides a select built-in

&

is_less
ffffffff ffffffff 00000000 00000000

c0a00000 42fe0000 00000000 00000000

-5.0f 254.5f 0.0f 0.0f

c0a00000 42fe0000 437e8000 4e8f0d18

-5.0f 254.5f 254.6f 1.2E9f

254.6f 254.6f 254.6f 254.6f

55

Built-in Math Functions

IEEE 754 compatible rounding behavior for single precision
floating-point
IEEE 754 compliant behavior for double precision floating-point
Defines maximum error of math functions as ULP values
Handle ambiguous C99 library edge cases
Commonly used single precision math functions come in three
flavors

� eg. log(x)
– Full precision <= 3ulps
– Half precision/faster. half_log—minimum 11 bits of accuracy, <= 8192 ulps
– Native precision/fastest. native_log: accuracy is implementation defined

� Choose between accuracy and performance

56

kernel read(global int* g, local int* shared) {

if (get_global_id(0) < 5)

barrier(CLK_GLOBAL_MEM_FENCE);

else

k = array[0];

}

Built-in Work-group Functions

work-item 0

work-item 6
Illegal since not all
work-items
encounter barrier

58

Built-in Functions

Integer functions
� abs, abs_diff, add_sat, hadd, rhadd, clz, mad_hi, mad_sat,

max, min, mul_hi, rotate, sub_sat, upsample
Image functions
� read_image[f | i | ui]
� write_image[f | i | ui]
� get_image_[width | height | depth]

Common, Geometric and Relational Functions
Vector Data Load and Store Functions
� eg. vload_half, vstore_half, vload_halfn, vstore_halfn, ...

59

Extensions

Atomic functions to global and local memory
� add, sub, xchg, inc, dec, cmp_xchg, min, max, and, or,

xor
� 32-bit/64-bit integers

Select rounding mode for a group of instructions at compile
time
� For instructions that operate on floating-point or produce

floating-point values
� #pragma OpenCL_select_rounding_mode

rounding_mode
� All 4 rounding modes supported

Extension: Check clGetDeviceInfo with CL_DEVICE_EXTENSIONS

OpenCL™ Language

Show the SDK

	What is OpenCL™?�
	Overview
	Welcome to OpenCL™
	OpenCL™ Execution Model
	Expressing Data-Parallelism in OpenCL™
	Expressing Data-Parallelism in OpenCL™
	Global and Local Dimensions
	Example Problem Dimensions
	Synchronization Within Work-Items
	Part 2: What is OpenCL™? (continued)�
	Global and Local Dimensions
	OpenCL™ Platform Model
	OpenCL™ Memory Model
	OpenCL™ Objects
	OpenCL™ Framework
	Part 3: Resource Setup�
	OpenCL™ Framework
	Setup
	Setup: Notes
	Choosing Devices
	Memory Resources
	Image Formats and Samplers
	Allocating Images and Buffers
	Reading and Writing Memory Object Data
	Introduction to OpenCL™: part 4�
	Program and Kernel Objects
	Slide Number 27
	Compiling Kernels
	Creating a Program
	Compiling and Creating a Kernel
	Executing Kernels
	Synchronization Between Commands
	Synchronization: One Device/Queue
	Synchronization: Two Devices/Queues
	Synchronization: Two Devices/Queues
	Using Events on the Host
	Part 5: OpenCL™ C�
	OpenCL™ C Language
	Address space
	Workgroups
	Synchronization
	Kernel
	Work-Items and Workgroup Functions
	Data Types
	Data Types
	Vector Operations
	Vector Operations
	Vector Operations
	Vector Operations
	Address Spaces
	Address Spaces
	Conversions
	Conversions
	Reinterpret Data: as_typen
	Built-in Math Functions
	Built-in Work-group Functions
	Built-in Functions
	Extensions
	��OpenCL™ Language

